“M Escola de Camins

iy 'I ¥ Escola Téonica Supsrior &' Enginyeria de Camins, Canals i Ports

UPC BARCELOMATECH

Model per a impressié 3D
de superficies basades en
Batimetria

Treball realitzat per:

Pol Banos Castello

Dirigit per:
Alberto Garcia Gonzalez

Jaume Soler Villanueva

Grau en:

Ciencies i Tecnologies del Mar

Barcelona, 29/06/2022

Departament d'Enginyeria Civil i Ambiental (DECA) - Matematica
Aplicada i Estadistica (MAE)

TREBALL FINAL DE GRAU

Agraiments

Aquest treball no hauria estat possible sense el suport incondicional de la meva amiga Carme
Feliu i Cremades a la que vull agrair la seva dedicacié i comprensid a qualsevol hora del dia o la
nit. Gracies, Carme.

A la meva familia per aguantar-me, sé que han passat moments dificils al meu costat aquest
ultim temps, la vida et posa a prova sempre. L'elaboracié d'aquest projecte acompanyat d'una
situacio dificil viscuda per un amic m'ha portat a viure moments molt critics i depriments des de
fa uns mesos, i sempre els he tingut al costat. Gracies, familia.

A tots i totes les companyes de classe i de la colla Cactus que m'han acompanyat durant aquest
llarg viatge. Gracies, amics i amigues

Al Raul Gimenez Rodrigo dels serveis TIC UTG Camins - TECH que no m'ha deixat de la ma en cap
moment, oferint-me el seu suport incondicional per poder obtenir les impressions 3D. Gracies,
Raul.

Als meus dos tutors Alberto Garcia Gonzalez i Jaume Soler Villanueva que van acceptar la meva
proposta de projecte i han estat seguint-lo de manera activa i generosa des de l'inici. Gracies,
Alberto i Jaume.

GRACIES SENSE VOSALTRES RES HAGUES ESTAT IGUAL.

RESUM ...ttt a ettt s e st a et s s st sa st s s e s s s s e s s se s s s et e s ae s s st e s nanaesanes 3
1 INTRODUCCIO — OBJECTIUSooverecveeeeteeecteseeeeteseseetesssesesassssesessssssssssssssssesassessssssesasssssssssnns 4
2 ESTAT DE L'ART weeeeceeeeceeeeeee e seeae e tesas st sasas s st s st esssassanssssssssssssssessssssssasssssssssasenens 5
3 IMETODES. ..ottt ettt s s s s s et et s s s sae s et et s s asast et et et ennnanaetetesanas 6
3.1 METODES D’INTERPOLACIO ..ottt 6
3.1.1 KRIGING ORDINARL.....covieivieceeteeeee et sesae st ae s sss s s st ae s senes 6
3.1.2 INVERSE DISTANCE WEIGTHED INTERPOLATIONcvvurvereecrereeerreceesessaeeneen. 12
3.1.3 RADIAL BASIS FUNCTION INTERPOLATIONoueviereerreeeeeeeeceeseeeeseseseesesnsssnenens 13
3.1.4 METODES DE VALIDACIO.......coiieiueeetereieieeeiete et 14

3.2 GENERACIO DE LA MALLA 3D ..ottt ses et sss e senae s aesnaesaes 16
3.21 TRIANGULACIO DE DELAUNAYooovieeereeceetceetesseesesesaessssae s ss e ses s sanans 16
3.2.2 SOFTWARE MESHMIXER ...coovuvucviceeeeceeseeecsesesesssssassessasssssssssessssssssssssssasssanens 16

3.3 IMPRESSORA 3D ...voeiieiieeeeeeecee st seeeetessse st s sssssssssssssesenssssssassesssssssassssanansans 21
34 WORK FLOW ..ottt st s sss st en st s st sasssssasaesnansans 23

A RESULTATS ..ottt et teste e sae sttt ae s s et s st ae s st et s s s et nssssssssesensssessassesanansans 24
4.1 IDW INTERPOLATION RESULTATS ...ououvieceeeeeceeteeeeteseseesesssssssssssesesssssassesssassssessesanes 25
4.2 RBF INTERPOLATION RESULTATSouvuvieceeveeceeseeeteseseesesssssesessssessssssssssesssasssssssesanes 27
4.3 KRIGING INTERPOLATION RESULTATSooveveerrerceeteseceesesessesssssssesesssssassesesassessssesnnes 28
4.4 RESULTATS | PARAMETRES PER LA CREACIO DEL FITXER STL v.vvveeeieivcicreieieeecaeanene, 30
4.5 IMPRESSIO 3D DINS EL SANDBOXcuvrveeeereeceeereetsssaesesssesesssesessesssssssesssassesassesanes 32

5 DISCUSSIONS | CONCLUSIONS.......c.cviuiveieiietieeteseacsessae st ssasse s sesasae s s s s s s s ssanaes 33
6 LIMITACIONS | FUTUR PROXIMcovuiuirieiieiieeteseiesessiesesessesesasse s sasae s s se s ssaaes 34
7 BIBLIOGRAFIAoovieceeeeeeeecee e eeete st sesae st s st sasae s s st s assesesssssssseassansesananens 35
8 INDEX DE FIGURES.......cuitetetieececteteteteteeas ettt sttt st s st ettt se st et s e aes et s s s anaees 37
O ANNEX cvettitetiectettee vttt a ettt bbbt bt ettt bbb et b e st baes 39
9.1 ALTRES RESULTATScviuiterieitesieeesessassess e sessssessse s s s sas s s bbb s ssasse s s sanes 39
9.1.1 CANONS SUBMARINSoooteriecreiiieteseste et ses e aessanas 39
9.1.2 VILANOVA | LA GELTRUevoieeeeceeeeecee ettt s s 42
9.1.3 CAP DE CREUS ...ttt see e ae sttt ae st st nanansnanens 46
9.1.4 GHON ..ottt ettt 49

9.2 CODIPYTHON ...oovieieivieieeteeeste ettt bbb s e s bbb ae s ae s s sanes 52
9.2.1 IDW _MUHIPrOCESSING.PY coeeeriiieiie e e e ettt e e e e e e ettt e e e e e e e esrrree e e e s e e e ssnbraaeeeaaaeeas 52
9.2.2 RBF MU PIrOCESSING. DY coeeeitteieiee e e e ettt e e e e ettt e e e e e e et e e e e e e e e e enrraaeeeeaeeean 62
9.2.3 Kriging mMUILiPrOCESSING.PY ..uvvriiiieeeiecciiiiieee e e e e ettt e e e e e e eeeree e e e e e e e e ssrrreeeeaeeeas 70
9.2.4 STL _DElaUNAY.PY ceeeieiiiie ettt ettt e et e et e e e e bre e e s e sbteeessbaeeeeereaeaeenns 77

RESUM

En la durada de tot el projecte es parlara del funcionament técnic de métodes d'interpolacié en
I'ambit de topografia i batimetria a partir dades no estructurades per generar una malla de nous
punts, la qual finalment la convertirem a un fitxer STL apte per una impressora 3D. Tot el procés
estara seguint un WorkFlow basat en programari lliure que qualsevol usuari podra utilitzar.

Els meétodes seleccionats han estat I'Inverse Distance Weighting Interpolation (IDW), el Radial
Basis Function Interpolation (RBF) i Kriging Ordinari. Es faran servir els tres metodes
d'interpolacio per cinc conjunts de dades de diferents zones geografiques: la costa de Vilanova
i la Geltrd (Barcelona), el Cap de Creus (Girona), una part de la costa de Gijén (Asturies) i
finalment l'illa de La Palma (Canaries). L'algoritme que s'ha emprat per realitzar les
interpolacions ha estat escrit amb Python, que al costat dels softwares MeshMixer i BCN3S
Stratos, son els softwares lliures que s'han fet servir.

Un cop feta la interpolacié encara amb el Python, es generara el primer STL de la superficie
interpolada, a la qual se li arreglaran tots els desperfectes. Seguidament se li donara gruix, per
tenir-lo ja llest per imprimir-lo amb una impressora 3D de I'empresa BCN3D.

Finalment, un cop tenim la nostra zona interpolada i impresa en tres dimensions, s'utilitzara un
SandBox per fer la visualitzacid final del projecte.

Paraules Clau: Interpolacid, Batimetria, Inverse Distance Weighting, Radial Basis Function,
Kriging Ordinari, STL, impressora 3D.

ABSTRACT

During the whole project we will explain the technical operation of interpolation methods in the
context of topography and bathymetry from unstructured data to generate a mesh of new
points, which we will finally convert it into an STL file ready for a 3D printer. The whole process
will be following a WorkFlow based on free software that any user will be able to use.

The selected methods have been the Inverse Distance Weighting Interpolation (IDW), the Radial
Basis Function Interpolation (RBF) and Ordinary Kriging. The three interpolation methods will be
used for five data sets from different geographical areas: the coast of Vilanova i la Geltru
(Barcelona), Cap de Creus (Girona), a part of the coast of Gijon (Asturias) and finally the island
of La Palma (Canary Islands). The algorithm used to perform the interpolations has been written
with Python, which together with the software MeshMixer and BCN3S Stratos, are the free
software used.

Once the interpolation is still done with Python, the first STL of the interpolated surface will be
generated, to which all the defects will be repaired. Then we will give it thickness, to have it
ready to print it with a 3D printer of the company BCN3D.

Finally, once we have our area interpolated and printed in three dimensions, a SandBox will be
used for the final visualization of the project.

Key words: Interpolation, Bathymetry, Inverse Distance Weighting, Radial Basis Function,
Ordinary Kriging, STL, 3D printer.

1 INTRODUCCIO — OBJECTIUS

Una bona interpolacié de dades no estructurades, és a dir, que tenen una distribucio irregular i
gue no estan en els veértex d'una quadricula cartesiana, com les que es treballaran en aquest
projecte, pot tenir moltes utilitats en tots els sectors de simulacions i prediccions climatiques,
on les dades de batimetria sén un dels inputs més importants. El motiu principal de tenir dades
no estructurades és que hi ha zones de molt dificil accés, on no es poden recollir dades, és per
aixo que realitzem aquestes interpolacions. Per exemple, en el sector de simulacions de models
numerics, programes com el SWAN i el XBEACH utilitzen una malla batimétrica com a un dels
inputs del model, que simulara i fara prediccions d'onatge i moviment del sediment.

L'objectiu principal d’aquest projecte és dur a terme un WorkFlow de manera que, només llegint
i seguint els passos indicats, I'usuari sigui capag d'elaborar i passar del seu ndvol de punts inicial
a un STL a punt per a imprimir-lo en 3D, mitjancant I'Us de diferents entorns, com el Python, el
MeshMixer i el software d'una impressora 3D.

S'han seleccionat tres metodes d'interpolacié diferents, I'lnverse Distance Weighting
Interpolation (IDW), el Radial Basis Function Interpolation (RBF) i el Kriging Ordinari. Es
realitzaran les interpolacions de diferents zones geografiques: la costa de Vilanova i la Geltru
(Barcelona), el Cap de Creus (Girona), una part de la costa de Gijon (Asturies) i finalment I'illa de
La Palma (Canaries). Un cop realitzada aquesta interpolacié feta amb Python seguirem amb
aquest entorn per generar la primera fase: generar un fitxer STL 3D de la superficie interpolada
del STL. Aquest fitxer sera convertit en un fitxer STL apte per a la impressié 3D amb el software
de MeshMixer.

2 ESTAT DE L'ART

Avui en dia existeixen molt tipus d’interpolacions en I'ambit de topografia i batimetria. Tenim
des de metodes menys complexos a més complexos. Alguns del métodes més coneguts sén
(Serreta Olivan & Playan Jubillar, 1993); I'Inverse Distance Weighting Interpolation (IDW) , el
Radial Basis Function Interpolation (RBF), Poligons de Thisen, la Xarxa de Triangles Irregulars
(TIN), les Seéries de Fourier i Kriging entre d’altres. Donat el temps que es té per a realitzar un
projecte com aquest s’ha optat per seleccionar els tres metodes segiients; el IDW, RBF i Kriging
Ordinari, ja que el primer és el més simple perdo amb gran eficiéncia, el segon és una mica més
complex d’utilitzar, ja que computacionalment és més costos, i finalment I'dltim que és un dels
millors de tots els métodes per a la interpolacid en batimetria i topografia (Adhikary et al., 2016).

S’ha decidit que la representacié grafica de la interpolacié fos per mitja d’'una impressora 3D. La
impressio 3D és actualment una tecnica molt innovadora que permet fer coses extraordinaries,
des de la manufacturacié d’una casa de forma economica (Plantamura F & Oberti |, 2015; Tobi
et al., 2018) fins a la generacié d’organs, com un pancreas o un fetge, utilitzant com a material
cél-lules (Schubert et al., 2014; Yoo, 2015). Cal dir, pero, que no es I'Unica opcid per a realitzar
una impressid com aquesta, també existeix la técnica de CNC 3D, que consisteix a eliminar
material d’un bloc inicial perd, a part que és una técnica més cara, és molt més dificil accedir a
una d’agquestes maquines que a una impressora 3D.

Per a finalitzar es treballara amb un SandBox per fer la presentacio dels models impresos en 3D.
El SandBox que tenim a la universitat és el resultat final d’'un Treball Final de Master (TFM)
realitzat fa uns anys aqui a I'escola de Camins de I'UPC. El codi original del SandBox i tot el seu
procediment de construccid va ser cedit gratuitament pel seu desenvolupador, creador i
estudiant en aquell moment de la Univesity of California, Davis Oliver Kreylos (Reed et al., 2016).

3 METODES
3.1 METODES D’INTERPOLACIO

Les metodologies mostrades a continuacié sén metodes d’interpolacio que parteixen d’un ndvol
de punts amb coordenades (X,Y, Z) per tal de, amb diferents métodes d’interpolacié, podrem
calcular la coordenada Z punt (X,Y) en una malla diferent.

3.1.1 KRIGING ORDINARI

Kriging és un model d’interpolacié molt potent en la geoestadistica i s’utilitza en molts softwares
GIS (SIG - Sistemes d’Informacid Geografica, o en anglés GIS - Geographical Information System).
Atés que es tracta d’un metode molt potent computacionalment parlant, és recomanat aplicar-
lo quan tenim una alta qualitat en les dades i volem un resultat molt acurat (Introduction to
Spatial Analysis, n.d.). Existeixen tres métodes diferents dins del model de Kriging; el Kriging
Ordinari, el Kriging Simple, i el Kriging Universal.

El metode Kriging és similar al Inverse Distance Weighting interpolation (IDW), ja que ambdds
meétodes d’interpolacid expressen la suma ponderada de les dades (ArcGlS, n.d.).

Aquests metodes utilitzen la SemiVarianca per obtenir els valors de la coordenada Z en els nous

punts d’interés. El problema és estimar I'altura Z, d'un punt (X,, Y;) a partir dels valors observats
Z; de cada punt (X;, Y;),

1<i<N N és el nombre de dades

Aix0 es calcula
N
ZO = Z WiZi (1)
i=1
on els w; sén els pesos tal que

N
szl (2)

L'estimacié Kriging s'obté agafant els w; de manera que la variancia estimada entre el punt
interpolat Z, i el punt real Z,,

o= (o~ 20) @)

sigui minima.

A partir de les dades, el primer que es fa per a calcular el SemiVariograma és calcular la relacié
de la distancia entre parells de punts i la diferéncia absoluta de les seves coordenades (x, y), tot
calculat en metres. Obtenint aixi un grafic com el de la Fig. 1 on cada punt blau fa referéncia a
una parella de punts.

Z distances

190 O
e
[H
| e
L. .
'
!-
'
'H |
.
D
i|\| :

Parametric distances

Fig. 1 Grafica que relaciona la distancia entre parells de punts i la seva diferéncia absoluta en la coordenada Z.

Seguidament, i a partir del que s’ha calculat en el grafic anterior, es comenca a calcular el
SemiVariograma en funcié SemiVarianca (Eq. 4). Es divideix I’eix X de la Fig. 1 en subintervals de
longitud h divisions i es calcula la SemiVarianga per cada interval d’amplada h. La distancia h
que s’acaba d’esmentar és el que més endavant anomenarem lag, que sera la distancia entre
punts del SemiVariograma. En termes practics normalment el que es fa és dividir el
SemiVariograma en un nombre determinat de lags i després calcular la distancia h de separacio.

N(h)
1
y(h) = 2N ; (zG+h) - Z(i))2 (4)

N(h) - Nombre de punts aparellats separats a una distancia < h
Z(i) - Elvalor de Z d'un punt
Z(i + h) - Elvalor de Z d'una altre punts a distancia < h

A partir del calcul de la SemiVarianga obtenim la grafica del SemiVariograma Empiric (y(h)) com
podem veure a la Fig. 2.

y(h)

Y

Distancia

Fig. 2 SemiVariograma Empiric (Cérdoba et al., 2019).

El que podem determinar a partir d’aquest SemiVariograma (alguns autors en diuen
autocorrelacié espacial quantificada), és que és més probable que els parells de punts que es
trobin més a prop seran més semblants entre ells que no pas els que es troben més llunyans
(ArcGIS, n.d.; Cordoba et al., 2019).

Els parametres que defineixen un SemiVariograma Teoric (?(h)) son: el Nugget (Cy) és el valor
on el SemiVariograma esta més a prop (o quasi talla) de I'eix Y, el Sill Parcial (C), el Sill (C + Cy)
gue és el valor del model és constant i el Rang (R) és la distancia que té el model fins que el
valor del SemiVariograma és constant, com es poden veure en la Fig. 3. El terme Sill fa referéncia
al punt on la variancia entre parells de punts deixa d’augmentar i roman constant amb la
distancia.

Py,

Sill

Distancia
Fig. 3 SemiVariograma teoric de un model Esferic (Cérdoba et al., 2019).

En aquest punt hem de decidir quin dels models que es descriuen a continuacié s’ajusta millor
al nostre SemiVariograma. Aquest sera un punt d’inflexié en la resta del procés, ja que I'eleccio
del model determinara la descripcié espacial i les futures prediccions que es realitzaran.

Alguns dels models que s’utilitzen per ajustar Kriging Ordinari son: el Model Esferic, el Model
Exponencial, el Model Circular, el Model Gaussia i el Model Lineal. L’eleccié del model sera un
dels factors més importants a tenir en compte en aquest metode, particularment en els parells
de punts més propers a I'origen del SemiVariograma, ja que cada model esta dissenyat per
modelar diferents fenomens (ArcGlS, n.d.).

Aqui podem veure alguns del models d’ajustament de SemiVariogrames més simples i d’altres
més complexos, la majoria dels quals seran utilitzats a la part practica (Gabri, 2018;
GISGeography, 2022; Malicke, 2021; Montero et al., 2012).

Les seglients equacions estan descrites per les mateixes variables que segueixen la
nomenclatura de la Fig. 3, que corresponen a:

Co — Nugget.

Cy - Sill parcial.

h — Es la distancia entre punt i el 0 de l'eix X del Semivariograma.
a - Es el Rang del SemiVariogrma

MODEL LINEAL

El model lineal (Fig. 4) és el més basic de tots, ja que la varietat espacial va augmentat linealment
amb la distancia. Es un model que no té Sill, i és I'usuari qui els ha de posar manualment.

h .
C°+C1(E) si 0<h<a (3)
Co+ Cy si h>a

y(h) = {

SEmMivaraice

Digtance

Fig. 4 SemiVariograma Teoric ajustat amb un model lineal.

MODEL ESFERIC

El model esferic (Fig. 5) és un dels més utilitzats en modelat del SemiVariogrames, ja que mostra
una disminucid progressiva de l'autocorrelacid espacial, de la mateixa forma que creix la
SemiVarianga pero fins a cert punt on aquesta autocorrelacié passa a ser zero i on tindrem un

Sill.

0 Si h =
=1+ a2 -2(2)) st o<ns ;
y(h) = 0 115\, 2\g St =a (5)
Co + Cy si h>a
Distane

Fig. 5 SemiVariograma Tedric ajustat amb un model esfeéric.

MODEL EXPONENCIAL

En el model exponencial (Fig. 6) veiem com de forma gradual la variabilitat del SemiVariograma
va augmentant en funcié de la distancia entre parells de punts, de tal forma que a més distancia
tindrem una major variabilitat, sense arribar mai a un valor constant (Sill).

0 si h=0
— 3h
v(h) = {CO +C (1 - e(‘7)> si h>0 ()

Semivarsnce

Distamnce

Fig. 6 SemiVariograma Teoric ajustat amb un model exponencial.

MODEL GAUSSIA

En el model gaussia (Fig. 7) veiem com variabilitat segueix una distribucié de probabilitat normal
o gaussiana. Aix0 és molt util quan a distancies curtes tenim uns valors molt semblants, ja que
en distancies curtes tindrem una baixa variabilitat, i en distancies altes una alta variabilitat.

0 si h=0
_ _3n?
r=1c+¢, (1 o)> si h>0)

Semivariance

Distance

Fig. 7 SemiVariograma Tedric ajustat amb un model gaussia.

10

MODEL CIRCULAR

El model circular (Fig. 8) s’ajusta de forma molt semblant al model esféric exposat
anteriorment, utilitzant una funcid circular per ajustar el SemiVariograma.

0 si h=0
w={are(i-2ost ()2 o) s o<hsa @
v() =16 1 ncos a/ ma a St =a (8)

Co+Cy si h>a

Ditance

Fig. 8 SemiVariograma Teoric ajustat amb un model cubic.
MODEL CUBIC

El model cubic és molt semblant al model Gaussia explicat anteriorment, també té la mateixa
tendéncia amb un comportament parabolic a prop del origen.

y(h) = C°+Cl<7(§)2‘341_5(93*;(2)5‘%(2)7) st O0shs=a

Co+ Cy si h>a

MODEL ESTABLE | MATERN

Sén dos models d’ajustament que s’utilitzaran a la part practica degut a que, per defecte,
venen implementats en la llibreria utilitzada, perd no se’ls donara importancia.

Cada un dels models d’ajustament exposats s’utilitzen en diferents ocasions i en diferents
ambits de treball en funcié de la naturalesa de les dades amb queé es treballa. Com a norma
general, un dels models que s’ajustara millor a les nostres necessitats sera un model esferic
(Adhikary et al., 2016).

11

Per poder decidir quin dels seglients models cal escollir podem valorar quin és I’'Error Quadratic
Mitja (RMSE), que compara el valor predit segons el SemiVariograma Teoric (¥;) i els valors del
SemiVariograma Empiric (y;), seguint la formula seglent:

?’=1()7i —¥:)?
N

y; = Valors predits en SemiVariograma Teoric .
y; = Valors observat en SemiVariograma Empiric .

RMSE = (10)

Un cop ja s’ha escollit quin model utilitzarem per ajustar el nostre SemiVariograma utilitzarem
aquella funcid per calcular els nous punts de la nostra interpolacid.

3.1.2 INVERSE DISTANCE WEIGTHED INTERPOLATION

El metode Inverse Distance Weighting interpolation (IDW) és un metode senzill i no requereix
de costos computacionals elevats, sent aixi un dels models deterministes més utilitzats en la
interpolacié espacial i amb uns costos computacionals relativament baixos (Lu & Wong, 2008).
Per aquesta rad es considera aquest model d’interpolacié com a un dels métodes estandard en
I’'ambit de la ciéncia de la informacié geografica (Burrough & McDonnell, 1998) i s’utilitza en
molts softwares GIS, ja que no sdn necessaris molts coneixements en estadistica geoespacial.

Tal com s’ha explicat abans, aquest metode s’utilitza per determinar el valor Z(SO) en el punt
So- Z(S,) es calcula a partir de I'Eq.11.

N
2(Sy) = Z wiZ(S) (11)
i=1

Amb la condicio de
N
i

Com observem en I'Eq. 11 I'estimacioé de la nova profunditat/coordenada Z és una combinacid
lineal dels pesos (w;) i els valors de profunditat/coordenada Z de les dades, on w; segueix la
férmula seglient:

o 1ds dyf
Yje11/dg; Xl dof

d : Es la distancia que hi ha entre les coordenades
(Xo,Yy) del punts Sy i (X;,Y;) del punt S;.

Per al calcul de la distancia d s’ha de tenir en compte quina és I'estructura de les dades, ja que
podriem tenir els punts en coordenades UTM, donades en metres, o bé en coordenades
geografiques, donades en graus. Es important saber-ho perqué per la férmula del calcul de
distancies en coordenades UTM podem utilitzar Pitagores. En coordenades geografiques (x, y),
x = longitud, y = latitud, la longitud d’un grau sobre un paral-lel disminueix en augmentar la

12

valor absolut de la latitud. La distancia entre dos punts de coordenades geografiques (x;,y;) i
(x,¥,), suposades en radians ve donada per (Whittlesey, 2020),

d = R = arccos (cos (g - yo) cos (g - }’i)
T

+ sin (E - yo) sin (g — yi) cos(x; — Xo))

(14)

x, — Coordenada X que volem interpolar.
Yo — CoordenadaY que volem interpolar.
x; — Coordenada X d'un punt observat.
y; — CoordenadaY d'un punt observat.
— Radi terrestre en funci6 de la localitzaci6 dels punts geografics.

El radi de la terra dependra de la zona on estiguem, generalment se n’utilitzen tres, el radi de la
terra a I'equador, el radi en els pols i el radi mitja de la terra.

Radi Equatorial 6378.10 Km
Radi Polar 6356.80 Km
Radi Mitja 6371.00 Km

Taula 1. Valors en kilometres del radi de la Terra.

Llavors, segons les férmules que acabem de veure, s’hauran de calcular uns pesos diferents per
a cada un dels nous punts que vulguem calcular, on aquests sén inversament proporcionals a la
distancia (dy;) al quadrat que hi ha entre el nou punt (S,) i cadascun dels punts de les nostres
dades (S;) (Lu & Wong, 2008).

Com podem extrapolar del que s’acaba d’explicar, I'’eleccié de quants veins s’agafin per realitzar
el calcul dels pesos (w;), aquests tindran un efecte directe en com es comportara la interpolacio.
L’eleccio del nombre de veins també es veu determinat per la varianca que tenen les nostres
dades, ja que si no tenim grans variacions en zones petites agafant pocs veins ja tindrem una
interpolacié acceptable, pero si al contrari tenim una zona amb grans variacions en zones molt
petites el més segur és que necessitem més veins per calcular la interpolacid.

3.1.3 RADIAL BASIS FUNCTION INTERPOLATION

El métode Radial Basis Funtion (RBF) Interpolation és un metode d’interpolacié
multidimensional de dades no estructurades molt potent i dels més utilitzat que hi ha (Wright,
2003). S'utilitza en sectors com el Cartografic (que és amb la finalitat que I'utilitzarem aqui), pero
fins i tot s’utilitza en xarxes neuronals destinades a Machine Learning (Karayiannis & Randolph-
Gips, 2003).

La definicié d’aquest metode ve donada per les seglients equacions. Aquestes signifiquen que,
per un conjunt de N dades amb les seves corresponents coordenades XYZ, la nova coordenada
7 del punt S, esta definida pel sumatori d’un pes (w;) multiplicat pel seu kernel ([K];)-

N
2(50) =) wilKlo (15)
i=1

13

El kernel pot tenir diferents definicions, com per exemple la Multiquadratica, la Multiquadratica
Inversa o la Gaussiana entre d’altres.

k(x!, x7) = \/1 + (B llxt = x71)?% = [K]; (16)

Radial Basis Function Kernel - > Multiquadratic

1

k(xt, x/) = . —— = [K]y 17
) = =y~ Ko W)
Radial Basis Function Kernel - > Multiquadratic Inversa

k(x, o)) = e (BI=#1)" = [k],, (18)

Radial Basis Function Kernel - > Gaussiana

Els kernels sén distribucions de densitat simetriques al voltant del punts escollit per a cada un
d’ells. Les hipotesis que hem fet ens permeten transformar les equacions en un sistema
d’equacions lineal com es veu en I'Eq. 19, per trobar la solucid a la nostra funcié d’interpolacié.

[K]ll [K]12 [K]13 [K]lN Wy Zq
[Kl21 [Klzz [Klaz o [Klow || Wa Z
[K]31 (K13 K_]33 [K]3N Mf?’ = Z:3 (19)
[Kle [Ksz [Kst [KjNN W 2N

Resolent el sistema d’equacions lineal de I'Eq. 18 podem resoldre I'Eq. 14, que ens permetra
aixi calcular la Z(S,) del nou punt que volem interpolar. El procés es repeteix per a cada un
dels nous punts que volem calcular.

3.1.4 METODES DE VALIDACIO

Per dur a terme una validacié de com sén de fiables cadascun dels métodes d’interpolacio
proposats, el que fem és interpolar en coordenades (X,Y) on ja tenim una Z coneguda per
després calcular quin error tenim entre el valor real i el valor interpolat. D’aquesta manera,
podem seguir un mateix criteri a I’'hora d’avaluar I'eficacia de cada un dels metodes.

Per a cada una dels punts de validaciod es calcula I’'Error Absolut i I’Error Relatiu.
L’Error Absolut (Eq. 20) és la diferencia entre un valor real i un valor calculat.

Error Absolut = |Valor Real — Valor Interpolat| (20)

L’Error Relatiu (Eqg. 21) és la ratio entre I’Error Absolut i el Valor real.

] |Valor Real — Valor Interpolat|
Error Relatiu = (21)
|Valor Real|

D’aquesta manera obtindrem la coordenada (X,Y) amb la Z Real i Z Interpolada, i el seu
respectiu error absolut i error relatiu.

14

Per tal d’'intentar estandarditzar el calcul de I’error total que té el model es calculara el Mean
Squared Error (MSE) i el Root Mean Square Error (RMSE).

El MSE (Eg. 22) ens diu com de propera és la linia als nostres punts. Per fer-ho utilitza la distancia
entre els puntsrealsi els interpolats. La quadratura s’utilitza per eliminar signes negatius i donar-
limés pes a aquells errors que tenen una distancia més gran. Llavors, com més petit sigui el MSE,
millor sera el model (Statistics How To, n.d.-a).

Zé\il(z,\i - Zi)z (22)
N

2; = Valors predits en el punt i.
z; = Valors observat en el punt i.

MSE =

El RMSE és I'arrel quadrada del MSE i és la desviacio estandard de I'error que hem tingut en el
moment d’interpolar (Statistics How To, n.d.-b).

RMSE = (23)

Z; = Valors predits en el punt i.
z; = Valors observat en el punt i.

En ultima instancia, calculem la diferéncia entre el vector de coordenades Z Real i
Z Interpolada en els punts de validacid, i fem la norma d’aquesta diferéncia.

D = ||Z Real — Z Interpl|| (24)

Z Real = Vector amb les coordenades Z Reals dels punts de validacié.
Z Interp — Vector amb les coordenades Z Interpolades dels punts de validacié.

15

3.2 GENERACIO DE LA MALLA 3D

Un cop interpolats els punts d'interées el que tindrem és un arxiu .csv on la primera columna sén
les coordenades X, la segona columna sén les coordenades Y i la darrera columna sén les
Coordenades Z, per tant, per cada una de les files tenim un punt (X,Y, Z).

Per a poder imprimir necessitem crear un arxiu STL (de I'anglés "STereoLithography"). Es un
format d'arxiu utilitzat en sistemes CAD (disseny assistit per computadora), que defineix quina
és l'estructura d'un objecte en tres dimensions. El principal objectiu dels fitxers STL és codificar
I'estructura d'un objecte 3D. (AllI3DP, 2021).

El primer pas que fem per aconseguir un arxiu STL per enviar-lo a la impressora 3D, és generar
una malla de triangles en format (STL), pero sense gruix, dels resultats de la interpolacié. Per
fer-ho s'ha fet Us de la Triangulacié de Delaunay. Un cop arribats a aquest punt emprant el
software de MeshMixer li donarem gruix al STL per enviar-lo a imprimir.

3.2.1 TRIANGULACIO DE DELAUNAY

La Triangulacidé de Delaunay és una xara de triangles que compleix una condicid, la condicié de
Delaunay. Aquesta diu que la circumferencia circumscrita és la que passa per tots els vertexs del
triangle i no conté en el seu interior cap altra punt de la triangulacié (Simmons, 2017). Qualsevol
conjunt de punts en el pla admet una triangulacié de Delaunay (Cheng et al., 2013).

»

Fig. 9 Exemple de la Condicio per fer la Triangulacié de Delaunay. A I'esquerra observem una triangulacio de
Delaunay no admissible, i a la dreta n’observem una d’admissible.

Un cop generat el fitxer STL de la superficie interpolada, I'importem al software MeshMixer.

3.2.2 SOFTWARE MESHMIXER

El primer pas que s'ha de fer és importar el fitxer STL generat amb la triangulacié de Delaunay
al software MeshMixer, és importar aquest fitxer, per fer-ho li donem a "Import" i busquem el
STL al nostre directori de treball.

Abans de prosseguir hem de tenir clares les dimensions en les quals voldrem treballar, ja que en
el moment de fer la impressié 3D dependrem molt de les dimensions de la impressora.

16

El seglient que farem és centrar I'objecte en les coordenades (0, 0, 0). Per fer-ho anirem a "Edit"
—"Transform", i un cop s’obri el menu de transformacid, canviarem el "Translate X", el "Translate
Y" i el "Translate Z" a zero.

A continuacié en el mateix menu de "Transform" ajustem les dimensions dels eixos en funcié de
les dimensions de la impressora. Com a norma general els eixos estan distribuits com veiem en
la Fig. 10. Hem d'escalar I'eix que abans s'apropi al limit de la impressora. Per fer-ho canviarem
el valor de "Size" en I'eix que volem i mentre I'opcié de "Uniform Scaling" estigui activada, el
programa escalara I'objecte en tots tres eixos per igual.

TY

(0,0,0)
. /\X

Fig. 10 Eixos en el software MeshMixer.

El pas seglient el farem Unicament si després de generar el STL de la superficie, la direccié de les
normals, que son els vectors perpendiculars als plans generats per cada un del triangles de la
malla, esta en direccié cap avall, es a dir, la component de la normal és negativa, com es mostra
a la Fig. 11.

Si és el cas, Unicament hem d’anar a I'opcié de “Select” i fer dos clics en I'objecte, aixo fara que
el seleccionem tot. Un cop el tenim tot seleccionat anem a “Edit...” i fem clic a I'opcié de “Flip
normals”. Si hem seguit els passos correctament, tindrem I'objecte com el veiem a la Fig. 12.

Fig. 11 Visualitzacio del STL abans de direccionar el Fig. 12 Visualitzacio del STL després de direccionar el
vector de les normals. vector de les normals.

Arribats a aquest punt farem una ullada per tal de veure si la nostre malla té defectes i si els té
arreglar-los. Exemples de defectes son els que podem veure a la Fig. 13 i la Fig. 14. Ens trobem
dos tipus de defectes, un d’ells és el que es generen en els extrem de la malla on tenim pendents
pronunciades, que fan que es formin parets que uneixen la pendent en els extrems de la malla,
I'altre es genera pel fet que tenim una zona amb pocs nodes (vertex del triangles) i una pendent
molt pronunciada, com a conseqliéncia veiem que els triangles no s’han generat del tot bé.

17

Fig. 13 Defecte probocada per tenir pocs punts en una Fig. 14 Defecte en I'extrem de la malla, que forma una
zona amb molta pendent. paret.

Per solucionar el primer defecte, el que farem és anar a “View” i activar I'opcié “Show
Wireframe” o prémer la tecla W per veure la malla de triangles. Després amb el “Select” amb
I"opcid “Size” a zero seleccionarem els triangles que volem eliminar com es mostra en la Fig. 15.
Una vegada seleccionats, premem la tecla “Supr” per eliminar-los.

Fig. 15 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 14.

Per eliminar I'Gltim defecte comentat, el que farem és seleccionar tot I'objecte/malla anant a
I"opcid de “Select” i farem dos clic a I'objecte, i aquest cop anem a “Edit...” i fem clic a I'opcié de
“Remesh” o prement la tecla R. | deixant els valors per defecte li donarem a acceptar. Aquest
procés no només ens ajuda a reparar la nostra malla sind que a més ens la suavitza fent-la una
malla regular.

18

N
A
N LOOHK S

Iz

o
(’/ﬁ'ﬁ/'

L

Fig. 16 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 13

Aguest pas és molt important, ja que quan es genera el primer fitxer STL, la triangulacié es fa en
dues dimensions i després se'ls déna els valors de profunditat provocant aquests desperfectes.
Es per aix0, que remallar és un pas molt rellevant, pel fet que estem regularitzant tota la malla
perd aquest cop en tres dimensions. El que significa és que tenim en compte les tres

coordenades de cada punt per generar els triangles, per aixo queden tots amb una forma molt
similar.

Finalment, haurem de donar-li gruix. Per fer-ho tornarem a anar a I'opcid de “Select” i farem

dos clic a I'objecte, i aquest cop anem a “Edit...” i fem clic a 'opcié de “Extrude” o amb tot
seleccionat, premem la tecla D i s’obrira el seglient menu.

. L i ignifi :
Extrusion 8 es opcions signifiquen
- Offset: el gruix que li volem donar.
Offzet 1.5699 mm X
- Harden: com seran de suaus les cantonades del gruix,
P
- com més a prop de 0 més suaus seran les cantonades.
Harden 0 - Density: la densitat que tindra l'interior del volum.
o Aguesta densitat sera condicionant a I’hora de la impressié, ja
- ’ . 7 . . . ’
gue a més densitat gastarem més material i trigarem més temps
Density 20 a imprimir.
- - Direction: Es la direccié que volem que segueixi el gruix.
Tenim I'opcid per defecte, “Constant”, que donara el gruix en
Direction Constant . ., . s
direccio als vectors normal dels triangles. | després tindrem
EndType Offset v I’opcid de seguir qualsevol dels eixos XYZ.
= p - - EndType: Per defecte, tindrem I'opcidé de “Offset”, que
resen'e Lroups

el que fa és donar la mateixa forma de la superficie original per
| | generar la segona cara del gruix. Per altra banda, tenim I'opcid
de “Flat” que, com diu la paraula, I’altra cara sera un pla.

Per finalitzar I’”Extrude” cliquem el bot6 “Accept” i aconseguirem un objecte amb gruix com el
que veiem a la seglient Fig. 17.

19

Fig. 17 Visualitzacio de com quedara el STL amb gruix.

Abans d’exportar el model hem de comprovar que les dimensions siguin aptes per a la nostra
impressora i si no és el cas i volem mantenir les dimensions originals del nostre objecte no tenim
més remei que tallar-lo. Per fer-ho, abans de tot hem de saber en quants trossos el volem tallar
i les dimensions de cadascun d’ells.

Una vegada sabem com farem els talls, anem a “Edit” i fem clic a 'opcidé de “Plane Cut”. En el
menu que s’obrira tindrem dos variables, “Cut type” i “Fill type”. Com el que volem aconseguir
és dividir el I'objecte en diferent blocs i que cadascun d’ells tingui un gruix propi, aquestes
variables s’han desar en: “Slice (Keep Both)” i “Remeshed Fill” respectivament.

Per realitzar el tall apareixera un pla que talla la figura com el que veiem a la Fig. 18. Aquest es
pot ajustar canviant 'orientacio del pla i/o desplagant-lo. Quan tinguem el pla en el lloc on volem
fer el tall li donem a acceptar i ens retornara un objecte dividit en dos.

Fig. 18 Pla que talla I'objecte. Fig. 19 Com és veu l'objecte un cop tallat.

Pero encara faltaria un ultim pas per a poder exportar aquests dos objectes per separat. En el
mateix menu de “Edit” anem a |'opcid “Separate Shells”. Automaticament ens dividira I'objecte
en dos i ens obrira el mend “Object Browser” on veurem que efectivament ja tindrem dos

objectes STL diferents.

Ara ja només quedara exportar els models perqué una impressora 3D el pugui obrir. Per fer-ho
només haurem de clicar a “Export” i guardar-lo en format STL ASCII Format (*.stl).

20

3.3 |IMPRESSORA 3D

La impressora utilitzada per fer totes les impressions és la Sigma R19 de I'empresa BCN3D.
Algunes de les especificacions més importants son (BCN3D, n.d.):

Volum d’impressio 210 x 297 x 210 mm
Numero d’extrusors 2
Resolucié de posicid Eix X: 0.0125 mm

Eix Y: 0.0125 mm
Eix Z: 0.001 mm

Temperatura de funcionament 15°eC-35¢2C

Temperatura d’extrusié maxima 290 °C

Materials admissibles PLA / ABS / Nylon / PET-G / TPU / PVA /
Composites / Altres

Connectivitat Targeta SD, USB

Consum eléctric 240W

Software preparacio fitxers BCN3D Cura = BCN3D Stratos

Taula 2. Especificacions de la impressora 3D Sigma R19 de BCN3D.

L’eleccid d’aquesta impressora i no una altra és perque és la que ens ha proporcionat els serveis
TIC de la UPC. Com bé diu en les especificacions s’utilitzara el software del BCN3D Cura/Stratos
per preparar els fitxer abans d'imprimir-los.

Fig. 20 Impressora 3D, Sigma R19 de BCN3D.

Amb el software de BCN3D Cura/Stratos prepararem el fitxers STL generats en els passos
anteriors.

Un cop importem el STL que volem imprimir, el primer que farem sera centrar I'objecte al centre
de la base virtual de la impressora, seguidament desplegarem el menu de configuracié de dalt a
la dreta. Per0 no ens serveix la configuracié d’impressié predeterminada, per canviar-la

21

premerem |'apartat de “Custom”, ho deixarem tot en per defecte menys dos apartats, “Infill” i
“Support”.

El primer dels apartats que hem de canviar a criteri de 'usuari és el “Infill” que és la densitat i
forma que tindra l'interior del volum del STL. La forma que tindra dependra molt de la forma
que tingui el STL. D’altra banda, la densitat és un punt molt important, ja que com més densitat
establim a la impressidé, més material gastarem i el temps d’impressié sera més llarg. L'altre
apartat que hem de modificar és el “Support”, el qual hem de tenir igual que a la Fig. 21, que és
la configuracio que s’ha utilitzat per fer les impressions.

Fig. 21 Configuracio utilitzada en cada una de les impressions.

Seguidament li donarem al botd “Slice” o “Segmentacién” de a baix a la dreta que comencara a
preparar com imprimira el STL, el cost aproximat del material, de la impressio, i el temps que
trigara. Si lidonem a “Preview” podrem veure detalladament com es fara la impressid., incloent
tot els suports que necessitarem per imprimir. Ens mostrara en color blau la impressié del STL,
en color verd, tota I'estructura dels suports que necessitarem per imprimir, i en color vermell
els moviments que fara I'extrusor.

Fig. 22 Visi6 detallada de com és fara la impressio.

Finalment, el darrer pas és exportar-ho tot en format *.gcode que sera el que la impressora
podra llegir a I’'hora de la impressié.

22

3.4 WORK FLOW

Inici WorkFlow

Format d'entrada

Input
pd.DataFrame()
X Y rd
Ao Ya E
Xy ¥ Z4
X5 ¥n Zn

Eleccid del Metode d'Interpolacio

Python

IDW

v

Kriging

Dades de Sortida

Resultat
Interpolacio

Calcul
d'Errors

—

Cutput
pd.DataFrame()
X b 'z
Xo | Yo | 2o

® Vi 24
X ¥'n ',
v
Creacio de la
Superficie del
STL

h

Fit<er STL de la
superficies Interpolada

Importar a MeshMixer

Arreglar possibles defectes
de la superficie del STL

Donar-li gruix

Fitxer STL 2D

Tallar a criteri del usuari

Exportar en format STL
ASCII

Importar al BCH Cura

Ajustar els parametres
necessaris per la impressio

Imprimir

Maqueta 3D

MeshMixer

l
T

MeshMixer

BCN3D
Stratos

l

BCN3D
Stratos

23

4 RESULTATS

S’han estudiat les seglients zones geografiques: la costa de Vilanova i la Geltru (Barcelona), la
topografia de Cap de Creus (Girona), una part de la costa de Gijon (Asturies) més especificament
el Cerro de Santa Catalina i les dues platges que té al costat i, finalment, l'illa de La Palma
(Canaries). Aquesta ultima zona és la que s’explicara més detalladament en aquests apartat, la
resta de resultats els podrem trobar a I'apartat d’Annexes.

Les dades inicials de la illa de La Palma son una matriu 3 x 2 305 on la primera columna correspon
a la component x dels punts, la segona columna a la coordenada y dels punts i finalment la
tercera columna que correspon a la coordenada z dels punts. Cada una de les files correspon a
un punt amb coordenades (X,Y, Z).

Les dades estan en format de coordenades geografiques, el que significa que les components x
i ¥ no estan en metres sind en graus (Latitud i Longitud). La representacid visual de les nostres
dades la podem observar a la Fig. 23.

Input Data La Palma

2000

- 1000

Latitude
Meters

—-1000

—2000

—3000

-18.1 -18.0 -17.9 -17.8 -17.7 -17.6
Longitude

Fig. 23 Representacid visual del Data Set de La Palma.

Dels 2305 punts (X, Y, Z) inicials, 210 es destinaran a fer la validacié del model i els 2095 restants
s’utilitzaran per fer les interpolacions.

24

4.1 |IDW INTERPOLATION RESULTATS

Per a la primera de les interpolacions agafarem diverses distancies al voltant de cada punt per
tal de veure com afecta el nombre de veins seleccionats per interpolar en cada uns dels punts.
Els radis seleccionats sén: 0.10, 0.25, 0.50, 1.00, 1.50, 2.00 (recordem que estem treballant amb
graus), per a cada una de les variables de la interpolacio s'han interpolat 67 600 nous punts
X,Y,2).

Com podem veure, a la taula comparativa de I’error obtingut de les interpolacions amb diferents
radis de veins, com més gran és el radi tindrem uns errors més elevats que no pas si tenim un
radi més petit. Aixo és pel fet que com més veins utilitzem per calcular un nou punt tindrem més
informacid del terreny i conseqlientment els pesos estaran més repartits, reduint aixi la
importancia dels veins més propers. Perd per altra banda, a menys veins els pesos estaran
repartits entre menys veins i d’aquesta forma se li donara més importancia als veins més propers
qgue no pas abans. Cal, pero, vigilar perqué si agafem un radi massa petit tindrem el problema
gue depen del punt que estiguem interpolant potser no trobem veins dins del radi de recerca i
desafortunadament tindrem un valor NaN (No Data).

IDW Radial Distances
0.01 0.025 0.05 0.1 0.15 0.2
Absolute Error NaN 100.0567 118.6891 170.0483 221.8803 270.2978
Relative Error NaN 3.0915 3.9345 5.8202 7.6967 9.4585
|z Real — z Interpl| NaN | 1449.9596 | 1719.9679 | 2464.2343 | 32153514 | 3916.9878

Taula 3. Diferents Errors calculats en les interpolacions IDW, segons el parametre Radial
Distances.

Aqui podem veure tres exemples de les distancies 0.1, 0.25 i 10, de manera que a la primera de
totes veiem que agafant un radi massa petit no podrem fer una bona interpolacio, ja que
tindrem llocs on no tindrem dades, i uns altres dos per comprovar la diferencia entre la un radi
gran i un altre petit.

Per tal de comprovar que no tinguem un error en el calcul de les distancies, ja que quan parlem
de latitud i longitud un grau no fa referéncia a la mateixa distancia a causa del fet que la terra
no és plana sind que és ellipsoide, s'ha repetit les interpolacions tenint en compte que 0.01
graus de latitud i longitud sén aproximadament 1,1 km i 1 km respectivament, a la latitud de
I'illa de La Palma. Les interpolacions s'han repetit amb els seglients parametres; 1, 2.5, 5, 10, 15,
i 20 km. Com a resultat de les interpolacions de comprovacié obtenim la seglient taula d'errors.

IDW Radial Distances (Km)
1.00 2.50 5.00 10.0 15.0 20.0
Absolute Error NaN | 100.1564 | 118.8183 | 167.0847 | 218.3348 | 266.6001
Relative Error NaN 3.0530 3.8561 5.6285 7.4639 9.1852
|z Real — z Interp|| NaN | 1451.4044 | 1721.8408 | 2421.2873 | 3163.9719 | 3863.4019

Taula 4. Diferents Errors calculats en les interpolacions IDW, segons el parametre Radial
Distances.

25

A continuacidé podem veure el resultat de les dues interpolacions que tenen I'error més petit.

Output Data La Palma Radial Distance 0.025 Output Data La Palma Radial Distance 2.5
2000

2000

1000 1000

28.0 28.0

8279 £ 8279 [

ﬁ —-1000 g § —-1000 %
27.8 27.8
277 —2000 277 -2000
276 —3000 278 —3000

-18.1 -18.0 =17.9: -17.8 -17.7 -17.6 -18.1 -18.0 -17.9 -17.8 =17.7 =17.6
Longitude Longitude
Fig. 24 Resultats de IDW amb Coordenades UTM i Radi Fig. 25 Resultats de IDW amb Coordenades
0.025 (GRAUS). Geografiques i Radi 2.50 Km.

Podem veure la diferéncia absoluta entre ambdues interpolacions a la Fig. 26

IDW Differences between UTM 0.025 vs GPS 2.5

28.2
5 250
28.1
28.0 200
&
:ﬂ
27.9
150
27.8
I 100
-
27.7
- 50
27.6
- - - - - - Lo
-18.1 -18.0 -17.9 -17.8 -17.7 -17.6

Fig. 26 Diferencia absoluta en metres entre les dos interpolacions de la Fig. 24 i la Fig. 25.

4.2 RBF INTERPOLATION RESULTATS
Per a la segona de les interpolacions agafarem diverses 8 per tal de veure com afecta aquest
valor en I'error de la interpolacid, tal i com s’ha fet en el meétode anterior amb les distancies. Les
B seleccionades sén: 0.25, 0.50, 1.00, 2.50, 5.00, i 10.0 (no unitats, perqué 8 és adimencional),
per a cada una de les variables de la interpolacié s’han interpolat 67 600 nous punts XYZ.

Per a realitzar aquesta interpolacié s’ha utilitzat el Kernal de tipus multiquadratic.

Com podem veure, a la taula comparativa de I’error obtingut de les interpolacions amb diferents
valors de 5, com més gran sigui aquesta 8 tindrem uns errors més petits que no pas si agaféssim

una § més petita.

RBF B
2.50 5.00 10.0 25.0 50.0 75.0
Absolute Error 14836.194 | 22068.353 | 136324.31 | 271.4132 | 124.5988 95.7327
Relative Error 776.0150 | 1343.6044 | 9510.1604 9.5296 3.7539 2.9715
lz Real — z Interp|| | 214996.88 | 319800.81 | 975526.87 | 3933.1511 | 1805.6087 | 1387.2983

Taula 5. Diferents Errors calculats en les interpolacions RBF, segons el parametre .

A continuacié podem veure el resultat de la interpolacié amb I'error més petit.

Latitude

28.2

28.0

27.94

27.8 1

27.7 A

Output Data La Palma Beta 75.0

2000

1000

-18.1 -18.0

-17.9 -17.8

Longitude

=197 -17.6

Fig. 27 Resultats de RBF amb un 8 de 75.

Meters

—1000

—2000

—3000

27

4.3 KRIGING INTERPOLATION RESULTATS
Com hem vist a I'apartat 3.1.1, el primer que farem és fer el calcul de les distancies

parametriques entre cada una de les parelles de punts com veiem a la Fig. 28.

pairwise difference

Pairwise distance ~ difference

0.0

0.1

0.3

0.4

0.5
separating distance

0.6

0.7

Fig. 28 Parametric Distace (cada punt correspona a la distancia entre una parella de punts i la seva diferencia de Z).

A continuacié s’han decidit diferents lags(numero de punts) pels quals voldrem separar el
SemiVariograma empiric, com sén 10, 20, i 30 lags (Fig. 29). D’aquesta manera ja podrem veure
quina funcidé s’ajusta millor al SemiVariograma empiric, juntament amb aquest també s’ha
calculat el RMSE per tenir una idea anticipada de com de fiable sera cada una dels
SemiVariogrames teorics que s’utilitzaran per fer les interpolacions.

SemiVariance

2.0

05

0.0 4

le6

10 lags

20 lags

30 lags

Fig. 29 SemiVariograma Empiric amb diferents valors de lags.

Lag (-)

Com podem veure a la Fig. 30, a priori veient els ajustaments dels SemiVariogrames diriem que

el metode Estable seria el que millor s’ajusta seguit per el model Gaussia.

28

25

~
>

semivariance (matheron)

25

2.0

semivariance (matheron)

1e6

Model: spherical; RMSE: 205214.48 1e6 Model: exponential; RMSE: 383505.48 1e6 Model: gaussian; RMSE: 75054.11

=
«

[
o

[
o

2.5 2.5
J“_-ff-'-
o~ 2.0 2.0
o _ _
z z
2 <
]]
£ £
515 15
E E
g g
5 5
2 10 2 104
]]
2 2
£ £
@ b
3 8
05 0.5
f T T T T T T 0.0 —f T T T T T T 0.0 T T T T T T
000 005 010 015 020 025 030 000 005 010 015 020 025 030 000 005 010 015 020 025 030
Lag () Lag (-) Lag()
1e6 Model: matern; RMSE: 87932.18 1e6 Model: stable; RMSE: 46576.90 1e6 Model: cubic; RMSE: 173044.08
2.5 2.5
ooy o o'y
e P
5.2 2.0 2.0 ~Y
z z
2 g
@]
£ £
& 15 " 154
E E
g g
5 H
] s
S 10 £ 101
H H
£ £
] b
3 8
05 0.5
0.0 0.0
000 005 010 015 020 025 030 000 005 010 015 020 025 030 000 005 010 015 020 025 030
Lag (1) Lag (1) Lag (1)

Fig. 30 SemiVariogrames empirics i teorics amb el calcul del RMSE corresponent.

Una vegada ja tenim els SemiVariogrames teodrics amb les seves funcions definides es fara la
interpolacio per a cada un dels models seleccionats, i un cop més calcularem I’error en base als
punts de validacid comentats préviament aconseguint els resultats de la taula seglient.

Kriging
Spherical | Exponential | Gaussian | Matern | Stable Cubic
Absolute Error 74.9663 75.7820 | 263.9398 | 230.2162 | 100.7198 87.1327
Relative Error 2.5443 2.5952 10.7858 9.3413 3.2734 2.8298
|z Real — z Interp|| | 1086.3649 1098.1861 | 3824.8515 | 3336.1493 | 1459.5684 | 1262.6732

Taula 6. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents

models.

A continuacidé podem veure el resultat de la interpolacié que té I'error més petit.

Output Data La Palma Kriging Spherical

2000
28.2
28.1 1000
28.0
0
8 27.9 0
E] 2
=] @
T =
—1000
27.8
—2000
27.7
27.6
—=3000

-18.1 -18.0 -17.9 -17.8 =177 -17.6
Longitude

Fig. 31 Resultat de la interpolacio per Kriging Esféric.

29

4.4 RESULTATS | PARAMETRES PER LA CREACIO DEL FITXER STL

Una vegada ja sabem quina de les interpolacions volem imprimir, el que farem és executar el
codi de Python 3 que s’encarrega de la generacié d’un primer fitxer STL de la superficie de la
interpolacié seleccionada. Es important que en aquest moment ajustem les dimensions dels
eixos XYZ perqueé es pugui apreciar bé els resultats. En el nostre cas que tenim que els eixos XY
estan en graus de latitud i longitud, amb una diferencia de dos graus com a molt, i que I'eix de
les Z esta en metres, amb una diferéncia de 6000 metres. Si representéssim els resultats tal com
els tenim els que veuriem en el STL seria una columna de punts molt alta on no podriem
diferenciar res, és per aix0 que en casos com aquesta, amb coordenades geografiques, que
redimensionem I'eix Z, en aquest cas el dividim per 3000 cada un dels valors del vector de zetes.

Fig. 32 Resultat visual després de fer Delaunay Fig. 33 Resultat visual després de fer Delaunay fent el
sense fer el redimensionat en I'eix Z. redimensionat en l'eix Z.

Seguidament obrim el fitxer STL al software MeshMixer i seguim els passos indicats a I'apartat
3.2.2. 1 en el moment que anem a donar el gruix al STL, a I'opcié d’ "Extrude”, en el nostre cas
els valors de les variables son les seglients:

- Offset: 10 mm.

- Harden: 50 %.

- Density: 20 %.

- Direction: “Y Axis”.
- EndType: “Offset”.

Un cop ja tenim el STL amb el seu corresponent gruix, només caldra separar el STL en diferents
STL per tal de poder-lo imprimir a més escala. El factor limitant de la mida d’aquestes particions
és el maxim de la impressora, en el nostre cas és de 210 x 297 x 210 mm, el factor limitant sén
les eixos X i Y.

Aquest STL de I'illa de La Palma en concret s’ha dividit en 8 subfitxers, dos que corresponen a la
part topografica i les altres 6 a la part batimetrica. Per tal de separar els dos grups principals el
que fem és tallar al nivell del mar. Per la resta, en el cas de les 6 parts batimétriques s’ha optat
per realitzar els 6 subfitxer de les mateixes dimensions en X i Y, i pels altres dos de la part

30

topografica, hem seguit un criteri per tal d’evitar errors en les impressions intentant deixar tota
la part amb mes canvis d’altimetria en la peca més gran i la resta en una més petita, degut a que
no hi cabia tot en la primera.

La decisio de fer les particions d’aquesta manera és deu a qué en el moment de la impressié
d’aquest tipus d’estructures es gastava molt de material per generar els suports de les partes
més elevades. Separant la topografia de la batimetria en el moment de la impressié ens
estalviem un 15% del material a utilitzar en aquesta maqueta.

Un cop ja tenim totes les peces impreses i enganxades obtindriem un resultat com el que es
mostra en la Fig. 34.

Fig. 34 Resultat final de les 8 impressions un cop muntades.

31

4.5 |MPRESSIO 3D DINS EL SANDBOX

Podem veure com queda la impressio del 8 fitxer STL muntats dins del SandBox. En la primera
Fig. 35 veiem només les isolinies d'altimetria, les quals no diferencien entre la part submergida
de la part que no ho esta. Per altra banda, en la Fig. 36 veiem la mateixa representacié que
abans, pero, aquest cop s'ha augmentat el nivell del mar fins a la cota corresponent a zero
metres del NMM (Nivell Mitja del Mar).

v\ ~
4

Fig. 35 Projeccio de les isoli’nis del SandBox sobre la Fig. 36 Proje-ccié de la Fig. 35 augmentant el nivell del
impressié 3D. mart fins a la cota 0 respecte al NMM.

32

5 DISCUSSIONS | CONCLUSIONS

Com hem vist, a I'hora de realitzar les interpolacions s’ha de decidir entre tres models i per cada
un d’ells també s'han de decidir parametres o models d’ajustament dins de cada un d'ells. Es per
aixo que s'ha intentat donar la millor opcié a escollir, perd aixo no es pot fer, ja que cada DataSet
és diferent i necessitara diferents parametres per trobar el millor ajustament. El que si s'ha
aconseguit és considerar la millor eleccié de parametres o el millor ajustament pels métodes
amb els quals s'ha treballat.

El primer de tots els models utilitzats del que parlarem sera I'Inverse Distance Weighting
Interpolation (IDW). Es un model que, com hem vist, es basa en la informacié dels veins que es
consideren dins d'un radi de cerca. Com menor sigui el radi, millors resultats obtindrem, a
condicid que el radi sigui prou gran per a poder considerar algun vei dins la zona. Com més gran
és el radi tindrem més veins que donen informacid, estarem repartint els pesos entre tots ells i
aix0 acaba sent contraproduent, ja que traiem importancia als veins més propers que realment
son els que ens interessen.

Com hem vist en la Fig. 26, la diferéncia entre interpolacions utilitzant Pitagores i 'Eq. 14 és
gairebé nul-la. Per tant, podem dir que en zones properes a I'equador, com sén les nostres zones
d'estudi, podem fer servir Pitagores directament sobre coordenades geografiques. La qual cosa
ens reduira molt el temps de computacié.

Per al cos del Radial Basis Function Interpolation (RBF) tenim dos parametres que influiran en el
calcul de la interpolacio, el tipus de kernel i el valor que li donem a la . En aquest cas s'ha fet
I'estudi amb el kernel de tipus exponencial i s'ha buscat la millor £ en funcié de les dades. En
termes generals, en tots els data sets utilitzats veiem una tendéncia a qué com més elevat és el
valor de la 8 millor sén les interpolacions. El valor de beta depéndra de les unitats que s’utilitzin.
El fet que la 8 sigui més gran fara que els valors propers als kernels tinguin una variabilitat molt
petita respecte al centre del kernel.

Finalment, en I'Ultim métode, el Kriging Ordinari, tenim diferents models. A priori, veient el
comportament dels SemiVariogrames podriem dir que clarament els models d’ajustament
Matern, Estable i Gaussia seran els que millors resultats donaran. Pero el que millor s'ajusta a
totes les interpolacions realitzades és el model Esféric, cosa que ja s'havia comentat
anteriorment.

La generaci6 del fitxer STL per imprimir és un tema complicat, ja que no ha estat facil degut a la
manca de bibliografia especifica d’aquest tema.

Finalment, s'ha generat un workflow molt complet des de l'inici fins a la generacié del STL i la
seva impressid, on es contemplen molts punts d'error que podem trobar i com solucionar-los i
tot amb programes de llicencia gratuita, que era un dels principals reptes que es van platejar en
aquest projecte.

Cal comentar que per facilitat de comprensid i utilitzacié els millors metodes personalment sén
I''IDW i el Kriging Ordinari.

33

6 LIMITACIONS | FUTUR PROXIM

Les principals limitacions durant tot el procés del projecte han estat a la part més practica, de
programacio i de 3D. Tota la part de programacio s’ha fet amb Python, que és un software lliure,
complint aixi un dels objectius principals del projecte, no necessitar cap mena de llicencia o
comprar cap programa per realitzar aquest WorkFlow. La limitacié principal amb el llenguatge
de programacio és que en el Grau de Ciéncies i Tecnologies del Mar de la UPC no es programa
en Python, pel contrari s’acostuma a utilitzar MatLAB. Pero no és fins a I’Ultim quadrimestre a la
mencio de Tecnologies a Vilanova i la Geltrd, que es comenca a utilitzar Python. El tipus de codi
qgue s’ha utilitzat en el projecte requeria coneixements avancats, que finalment es van poder
adquirir. Tot i aixi, el procés d’interpolacié complet on s’interpola amb diferents parametres per
a una posterior comparacié requereix de molt de temps de computacid per a un ordinador
convencional. Es per aixod que, gracies a la universitat, s’ha tingut accés a un servidor capac de
suportar aquesta carrega de feina i realitzar totes les interpolacions de manera raonablement
rapida.

L'altre principal limitacid ha estat la impressora 3D que molt amablement ens ha deixat el servei
TIC de la UPC de Camins. Es un model relativament petit i, per les dimensions en qué voliem
imprimir, s’"han hagut de fer talls en els models per tal de poder-los imprimir tots i posteriorment
unir-los.

Futur Proxim

Com a futura linia de treball en aquest projecte, en el qual seguiré treballant, I'objectiu principal
és deixar-lo del tot optimitzat i llest per la seva utilitzacié com a programari lliure per a qualsevol
usuari. Tot i que hi ha varies parts del codi que ja han estat correctament optimitzades, n’hi ha
d’altres en les que encara es poden fer millores, per tal que aquest programari es pugui fer servir
des de qualsevol dispositiu sense cap problema.

34

/7 BIBLIOGRAFIA

Adhikary, S. K., Muttil, N., & Yilmaz, A. G. (2016). Ordinary kriging and genetic programming for
spatial estimation of rainfall in the Middle Yarra River catchment, Australia. Hydrology
Research, 47(6), 1182-1197. https://doi.org/10.2166/nh.2016.196

AlI3DP. (2021). The STL File Format Simply Explained. Oct 28, 2021. https://all3dp.com/1/stl-
file-format-3d-printing/

ArcGlIS. (n.d.). Cémo funciona Kriging. Retrieved April 11, 2022, from
https://desktop.arcgis.com/es/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-
works.htm

BCN3D. (n.d.). Manual De Usuario Sigma R19.
https://www.bcn3d.com/documents/Manual_de_Usuario_Sigma_R19.pdf

Burrough, P. A., & McDonnell, R. A. (1998). Principles of Geographical Information Systems.
Oxford University Press.

Cheng, S.-W., Dey, T. K., & Shewchuk, J. (2013). Delaunay Mesh Generation. CRC Press.

Cdordoba, M., Paccioretti, P. A., Giannini Kurina, F., Bruno, C. |., & Balzarini, M. G. (2019). Guia
para el andlisis de datos espaciales en agricultura.

Gabri. (2018). ¢Cémo funciona el semivariograma en la interpolacion?
https://acolita.com/como-funciona-semivariograma-interpolacion/

GISGeography. (2022). Semi-Variogram: Nugget, Range and Sill.
https://gisgeography.com/semi-variogram-nugget-range-sill/

Introduction to Spatial Analysis. (n.d.). Retrieved April 11, 2022, from
https://planet.uwc.ac.za/nisl/gis/spatial/chap_1_31.htm

Karayiannis, N. B., & Randolph-Gips, M. M. (2003). On the construction and training of
reformulated radial basis function neural networks. IEEE Transactions on Neural
Networks, 14(4), 835—-846. https://doi.org/10.1109/TNN.2003.813841

Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation
technique. Computers and Geosciences, 34(9), 1044—1055.
https://doi.org/10.1016/j.cageo.2007.07.010

Milicke, M. (2021). Variogram models. https://scikit-
gstat.readthedocs.io/en/latest/reference/models.html?highlight=Variogram

Montero, J. M., Fernandez-Avilés, G., & Mateu, J. (2012). Spatial and Spatio-Temporal
Geostatistical Modeling and Kriging. In Spatial and Spatio-Temporal Geostatistical
Modeling and Kriging. https://doi.org/10.1002/9781118762387

Plantamura F, & Oberti I. (2015). Is 3D Printed House Sustainable? Proceedings of International
Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban
Scale, 173—-178. https://infoscience.epfl.ch/record/213312

Reed, S., Hsi, S., Kreylos, O., Yikilmaz, M. B., Kellogg, L. H., Schladow, S. G., Segale, H., & Chan,
L. (2016). Augmented reality turns a sandbox into a geoscience lesson. Eos, 97.
https://doi.org/https://doi.org/10.1029/2016E0056135

Schubert, C., Van Langeveld, M. C., & Donoso, L. A. (2014). Innovations in 3D printing: A 3D
overview from optics to organs. British Journal of Ophthalmology, 98(2), 159-161.
https://doi.org/10.1136/bjophthalmol-2013-304446

35

Serreta Olivan, A., & Playan Jubillar, E. (1993). METODOS DE INTERPOLACION DE ALTIMETRIA
PARA LA GENERACION DE MALLAS TOPOGRAFICAS REGULARES EN PARCELAS DE RIEGO
POR SUPERFICIE (pp. 173-187).

Simmons, B. (2017). Circumcircle Circumscribed Circle. 19-Jul. Oct 28, 2021

Statistics How To. (n.d.-a). Mean Squared Error: Definition and Example. Retrieved May 17,
2022, from https://www.statisticshowto.com/probability-and-statistics/statistics-
definitions/mean-squared-error

Statistics How To. (n.d.-b). RMSE: Root Mean Square Error. Retrieved May 17, 2022, from
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-
root-mean-square-error

Tobi, A. L. M., Omar, S. A, Yehia, Z., Al-Ojaili, S., Hashim, A., & Orhan, 0. (2018). Cost viability
of 3D printed house in UK. IOP Conference Series: Materials Science and Engineering,
319(1). https://doi.org/10.1088/1757-899X/319/1/012061

Whittlesey, M. (2020). Spherical Geometry and its Applications. CRC Press, 120.

Wright, G. B. (2003). Radial Basis Function Interpolation : Numerical and Analytical
Developments. University of Colorado.

Yoo, S. S. (2015). 3D-printed biological organs: Medical potential and patenting opportunity.
Expert Opinion on Therapeutic Patents, 25(5), 507-511.
https://doi.org/10.1517/13543776.2015.1019466

36

8 [INDEX DE FIGURES

Fig. 1 Grafica que relaciona la distancia entre parells de punts i la seva diferéncia absoluta en la

(oo o] o [=TaF: [o I 15/ U U OO TSP 7
Fig. 2 SemiVariograma Empiric (Cérdoba et al., 2019).cccveeeciiieeiieeee et 7
Fig. 3 SemiVariograma teoric de un model Esféric (Cordoba et al., 2019).cccovveeiecireeieciieeens 8
Fig. 4 SemiVariograma Teoric ajustat amb un model lineal..........cccoecvveeieciiiiiccee e, 9
Fig. 5 SemiVariograma Teoric ajustat amb un model esferiC........ccevvciieiiiciiiiiiiie e 9
Fig. 6 SemiVariograma Teoric ajustat amb un model exponencial........ccccccveiiriieiiricieeeiicinennn, 10
Fig. 7 SemiVariograma Teoric ajustat amb un model gaussia.ccccvvevreeeriiieeiiiiee e 10
Fig. 8 SemiVariograma Teoric ajustat amb un model cUbiC.ccceeeeeiiiieieiiiiieccee e, 11

Fig. 9 Exemple de la Condicié per fer la Triangulacié de Delaunay. A I'esquerra observem una

triangulacié de Delaunay no admissible, i a la dreta n’observem una d’admissible. 16
Fig. 10 Eixos en el sOftware MEShIMIIXEIuiiiciiiiieciiie ettt e e e e s sraee s 17
Fig. 11 Visualitzacié del STL abans de direccionar el vector de les normals.cccceccvveeeennneen. 17
Fig. 12 Visualitzacié del STL després de direccionar el vector de les normals.ccceeeeunnneen. 17
Fig. 13 Defecte probocada per tenir pocs punts en una zona amb molta pendent. 18
Fig. 14 Defecte en I'extrem de la malla, que forma una paret.cccoccveeevicieeecciee e, 18
Fig. 15 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 14.................. 18
Fig. 16 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 13.................. 19
Fig. 17 Visualitzacid de com quedara el STLamb gruiX.......cccceeeeieeeeiiiieeeeciiee e 20
Fig. 18 Pla que talla I'obJeCte. ..o i e e n 20
Fig. 19 Com és veu I'objecte un cop tallat......ccocvieiiiciiiiiciie e 20
Fig. 20 Impressora 3D, Sigma R19 de BCN3D......cciiiiiieiiiiieee et e e e e e e eee e e 21
Fig. 21 Configuracié utilitzada en cada una de les impressions.cccceeeeccveeeeciieeeeccieee e, 22
Fig. 22 Visio detallada de com és fara 1a impressio..........cccuveieeciieeecciiee e 22
Fig. 23 Representacié visual del Data Set de La Palma.ccoeviiiiiiiiieieciiee e 24
Fig. 24 Resultats de IDW amb Coordenades UTM i Radi 0.025 (GRAUS).......cccceevcvveevieeecreeennen. 26
Fig. 25 Resultats de IDW amb Coordenades Geografiques i Radi 2.50 Km........ccccceeeevieeeennnennn. 26
Fig. 26 Diferencia absoluta en metres entre les dos interpolacions de la Fig. 24 i la Fig. 25...... 26
Fig. 27 Resultats de RBF amb UN B de 75.....coiiiiiiiiiiiieieerieesee et ee et e e seee e ensaenaee s 27
Fig. 28 Parametric Distace (cada punt correspona a la distancia entre una parella de puntsila

SEVA dIfErENCIA B Z). ot et e e e et e e e et e e e e e te e e e e teea e eanes 28
Fig. 29 SemiVariograma Empiric amb diferents valors de lags.........ccoeveeieeieiniiniinienieenens 28
Fig. 30 SemiVariogrames empirics i tedrics amb el calcul del RMSE corresponent.................... 29
Fig. 31 Resultat de la interpolacid per Kriging ESTEIIC.cccccuveieiiiieeieiieee e 29
Fig. 32 Resultat visual després de fer Delaunay sense fer el redimensionat en I'eix Z................ 30

37

Fig. 33 Resultat visual després de fer Delaunay fent el redimensionat en I'eix Z.ccc......... 30
Fig. 34 Resultat final de les 8 impressions un cop MUNtAdES.ccevvviiiiiiiiiiieiiiieee e 31
Fig. 35 Projeccid de les isolinies del SandBox sobre 1a impressio 3D......ccccccvveeviiveeeriiieeeinineennn 32
Fig. 36 Projeccié de la Fig. 35 augmentant el nivell del mart fins a la cota 0 respecte al NMM. 32
Fig. 37 Representacié visual del Data Set dels Canons Submarins.cccccccveeeeciieeeeiiieee e, 39
Fig. 38 Resultats de IDW amb Coordenades Geografiques i Radi 2.50 Km........ccccvvvviveerrinnennn. 39
Fig. 39 Resultats de RBF amb un de 75. ..ottt 40
Fig. 40 SemiVariograma Empiric amb diferents valors de 1ags.ccccccvevivvvieiiiicieee i, 40
Fig. 41 SemiVariogrames empirics i tedrics amb el calcul del RMSE corresponent.................... 41
Fig. 42 Resultat de la interpolacié per Kriging ESTEriC.ccccvveiiviiiiiiieiiei e 41
Fig. 43 Representacié visual del Data Set de Vilanova ila Geltrd.ccceecvveeivciveiinicieeeciiien, 42
Fig. 44 Resultats de IDW amb Coordenades UTM i Radi 200 metres.cccceeevevveeeeiiveeeeiceneennn 43
Fig. 45 Resultats de RBF amb un de 0,10.cccereeeerinieienienienie ettt 43
Fig. 46 SemiVariograma Empiric amb diferents valors de 1ags.cccccuveeeeiiiiecccieee e, 44
Fig. 47 SemiVariogrames empirics i teorics amb el calcul del RMSE corresponent.................... 44
Fig. 48 Resultat de la interpolacid per Kriging CUbIC.........cccviiiiiiiiiieiiiie e 45
Fig. 49 Resultat de la interpolacid per Kriging ESfEIIC.ccvcvuviiiiciiiieeiiieee e 45
Fig. 50 Comparativa entre les interpolacions de la Fig. 46 i de la Fig. 47, on veiem que la

diferencia 85 MINIMA. ...coc.ioi ettt ettt s e b e e b e sbeesaees 45
Fig. 51 Representacié visual del Data Set de Cap de Creus.occvveeeeciieeeecieee e 46
Fig. 52 Resultats de IDW amb Coordenades Geografiques i Radi 0.75 KM.......cccccevevviveeeninnenn. 46
Fig. 53 Resultats de RBF amb Un B de 75. . ..ottt st 47
Fig. 54 SemiVariograma Empiric amb diferents valors de 1ags.cccooueeeevcieiecciieee e, 47
Fig. 55 SemiVariogrames empirics i tedrics amb el calcul del RMSE corresponent.................... 48
Fig. 56 Resultat de la interpolacid per Kriging ESTEIIC.ccccvviiivciiiiieiiie e 48
Fig. 57 Representacié visual del Data Set de la platja de Gijon.cccccoveeeviiiiiieccieeeecieee e, 49
Fig. 58 Resultats de IDW amb Coordenades Geografiques i Radi 0.10 Km.........cccceeevvveeeennnenn. 49
Fig. 59 Resultats de RBF amb un £ .de 200.......ccceeriiriiiiieiniienieenee ettt 50
Fig. 60 SemiVariograma Empiric amb diferents valors de 1ags.ccccccvveevviieiiciieee e, 50
Fig. 61 SemiVariogrames empirics i tedrics amb el calcul del RMSE corresponent.................... 51
Fig. 62 Resultat de la interpolacid per Kriging ESTEIIC.ccccvvviiiiiiiiiieciiie e 51

38

9 ANNEX

9.1 ALTRES RESULTATS

9.1.1 CANONS SUBMARINS
Input Points Data = 4320

Validation Points Data = 432

Output Points Data = 272 484

Input Data Submarine Canon

23

-200

-400

-600

-800

% 422 -1ooo§
-1200
42.1 i
42.0 -1600
2 o Longitude
Fig. 37 Representacid visual del Data Set dels Canons Submarins.
IDW
IDW Radial Distances (Km)
1.00 2.50 5.00 10.0 15.0 20.0
Absolute Error NaN 43.8010 60.5574 79.8936 87.9803 93.3535
Relative Error NaN 4.4342 6.9887 9.8385 10.9309 11.8451
|z Real — z Interpl| NaN | 910.3877 | 1258.6621 | 1660.5591 | 1828.6365 | 1940.3173

Taula 7. Diferents Errors calculats en les interpolacions IDW, segons el parametre Radial
Distances.

Output Data Submarine Canon Radial Distance 2.5

423

-200

—400

-600

-800

ers

-1000 §
=

-1200

-1400

-1600

—1800

Fig.

44

Longitude

38 Resultats de IDW amb Coordenades Geografiques i Radi 2.50 Km.

39

RBF

RBF B
2.50 5.00 10.0 25.0 50.0 75.0
Absolute Error 27729.596 | 12810.184 | 21022.898 | 113.4269 48.1130 36.1209
Relative Error 2351.8594 | 1254.4651 | 1487.2614 10.5290 4.5333 3.4686
|z Real — z Interp|| | 576348.83 | 266254.67 | 436952.74 | 2357.5358 | 1000.0117 | 750.7602

Taula 8. Diferents Errors calculats en les interpolacions RBF, segons el parametre (3.

Output Data Submarine Canon Beta 75.0

423

Latitude
&
S
~

42.1

42

KRIGING

10 lags

44 46

Longitude

48

Fig. 39 Resultats de RBF amb un 3 de 75.

20 lags

-250

=500

=750

-1000

-1250

-1500

-1750

30 lags

Meters

350000

300000 1

250000 4

200000 4

150000 -

SemiVariance

100000

50000 4

oA

000 005 010 015 020 025 030 035

Fig. 40 SemiVariograma Empiric amb diferents valors de lags.

000 005 010 015 020 025 030 035

Lag ()

000 005 010 015 020 025 030 035

40

Model: spherical; RMSE: 39286.95

Model: exponential; RMSE: 58175.23

Model: gaussian; RMSE: 31396.37

300000 o 300000 3 300000 =
Z 250000 = 250000 Z 250000
g s £
£ H £
T s]
& 200000 £ 200000 § 200000
H 8 g
£ 150000 £ 130000 £ 150000
5] 5
ﬂEvg 100000 § 100000 E 100000
50000 50000 50000
000 005 010 015 020 025 030 035 000 005 010 015 020 025 030 035 000 005 0lo 015 020 035 030 035
Lag) Lag [-) Lag)
Model: matern; RMSE: 32506.35 Model: stable; RMSE: 23142.47 Model: cubic; RMSE: 41800.91
3200000 300000 300000
Z 250000 T 250000 2 250000
g H g
g i g
£ = £
" H i
£ 200000 £ 200000 £ 200000
g g g
& 150000 5 150000 5 150000
2 2 2
: £ :
g 100000 § 100000 5 100000
50000 50000 50000

Lag ()

0
000 005 010 015 020 025 030

000 005 010 015 026 025 030 035
Lag 1)

680 005 010 015 020 025 030 035
Lag)

Fig. 41 SemiVariogrames empirics i teorics amb el calcul del RMSE corresponent.

Kriging

Spherical

Exponential

Gaussian

Matern | Stable

Cubic

Absolute Error

30.6809

30.7142

84.9336

78.2171 92.7064

28.2086

Relative Error

2.4662

2.4693

7.9515

7.3791 8.5358

2.3270

|z Real — z Interp||

637.6914

638.3839x

1765.3134

1625.7129 | 1926.8683

586.3067

Taula 9. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents

models.

Output Data Submarine Canon Kriging Spherical

42.2

Latitude

—-200

—400

-600

-800

-1200

-1400

-1600

-1800

42

44

4.6
Longitude

5.0

Fig. 42 Resultat de la interpolacio per Kriging Esféric.

41

9.1.2 VILANOVA | LA GELTRU
Input Points Data = 1221

Validation Points Data = 123

Output Points Data = 68644

le6

Input Data Vilanova

4.566 1

4.564 4

Latitude

4.562

4.560 1

4.558 1

T T T T T T T
391000 392000 393000 394000 395000 396000 397000

Longitude

80

60

40

Meters

Fig. 43 Representacio visual del Data Set de Vilanova i la Geltru.

IDW
IDW Radial Distances (m)
175 200 225 250 275 300
Absolute Error NaN 0.7910 0.7910 0.7910 0.7910 0.7175
Relative Error NaN 1.6585 1.6585 1.6585 1.6585 2.0759
”Z Real — z [nterp” NaN 8.7729 8.7729 8.7729 8.7729 7.9583

Taula 10. Diferents Errors calculats en les interpolacions IDW, segons el parametre Radial

Distances.

42

1e6 Output Data Cap de Creus Radial Distance 200

4.566

4.564

40
% 4.562 g
20
4.560 0
-20
o 391000 392‘000 393000 394‘000 395'000 396000 397'000
Longitude
Fig. 44 Resultats de IDW amb Coordenades UTM i Radi 200 metres.
RBF
RBF B
0.10 0.25 0.50 0.75 1.00 2.50
Absolute Error 0.2649 0.2707 0.2726 0.2733 0.2736 0.2742
Relative Error 0.4544 0.4675 0.4720 0.4735 0.4742 0.4756
|z Real — z Interp|| 2.9388 3.0025 3.0242 3.0315 3.0351 3.0417

Taula 11. Diferents Errors calculats en les interpolacions RBF, segons el parametre (3.

KRIGING

1e6 Output Data Vilanova Beta 0.1

4.566

4564

Latitude

4.562

4.560

4.558

391000 392000 393000 394000 395000 396000 397000

Longitude

Fig. 45 Resultats de RBF amb un 8 de 0,10.

80

60

Meters

20

43

10 lags 20 lags 30 lags
500 | .
-
.
400
o 300
U (2
2 A
.2 .
2
s
Z 200 -
E o
& -
-
100 o
I'-
. -
-
0 -
500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
Lag ()
Fig. 46 SemiVariograma Empiric amb diferents valors de lags.
Model: spherical; RMSE: 65.49 Model: exponential; RMSE: 92.39 Model: gaussian; RMSE: 52.19
500 " 500 " 500 "
- - -
400 “00 00
H g 8
é 300 E 500 ‘é 300
g g g
L . I .
E E E
8 ¥ 8
100 100 100
a® -
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 o 500 1000 1500 2000 2500 3000 3500
Lag) Lag 1) Lag)
Model: matern; RMSE: 54.04 Model: stable; RMSE: 38.71 Model: cubic; RMSE: 68.76
s00 = s00 s00 ;
- -
400 00 a00
§ H H
: ¥ H
g 300 E 300 E 300
£ 200 £ 200 £ 200
5 g 5
E E £
8 ¥ 3
100 100 100
o o [
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500] 500 1000 1500 2000 2500 3000 3500

Lag ()

Lag -)

Fig. 47 SemiVariogrames empirics i tedrics amb el calcul del RMSE corresponent.

Kriging

Spherical

Exponential | Gaussian

Matern | Stable

Cubic

Absolute Error

0.3515

0.3793 0.2281

0.1970 0.2464

0.1177

Relative Error

0.6789

0.7810 0.3177

0.2766 0.3419

0.2134

||z Real — z Interp||

3.8992

4.2076 2.5299

2.1854 2.7327

1.3060

Taula 12. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents

models.

44

4.566

4564

Latitude

4.562

4.560

4.558

1e6 Output Data Vilanova Kriging Cubic

391000 392000 393000 394000 395000 396000 397000
Longitude

80

60

40

Meters

20

Fig. 48 Resultat de la interpolacio per Kriging Cubic.

Fig. 49 Resultat de la interpolacio per Kriging Esféric.

4.566

4564

Latitude

4.562

4.560

4.558

1e6 Output Data Cap de Creus Kriging Spherical

391000 392000 393000 394000 395000 396000 397000
Longitude

1e6 Kriging Differences between Cubic Model vs Spherical Model

175
4.566 - ‘
3 150
k™
. 2
4,564 - ' '*' 125
1.00
4.562 4
0.75
r 0.50
4.560 -
r0.25
4.558 1 L1 000

T T T
391000 392000 393000

T
394000

T
395000

T T
396000 397000

40

-20

Meters

Fig. 50 Comparativa entre les interpolacions de la Fig. 48 Resultat de la interpolacid per Kriging Cubic.Fig. 48 i de la
Fig. 49, on veiem que la diferencia és minima.

45

9.1.3 CAP DE CREUS
Input Points Data = 2854

Validation Points Data = 286

Output Points Data = 160000

Input Data Cap de Creus

42.15

42.10

42.05

Latitude

42.00

41.95

i
. --!’#l- ~~;t3..<s "‘

3.20

Fig. 51 Representacid visual del Data Set de Cap de Creus.

330
Longitude

335

345

400

200

Meters

-200

-400

IDW
IDW Radial Distances (Km)
0.50 0.75 1.00 2.50 5.00 10.0
Absolute Error NaN 18.4942 19.7605 25.8372 33.0762 40.9095
Relative Error NaN 2.6628 2.8783 4.1495 6.8330 10.3767
|z Real — z Interp|| NaN | 312.7653 | 334.1804 | 436.9475 | 559.3696 | 691.8435

Taula 13. Diferents Errors calculats en les interpolacions IDW, segons el parametre Radial
Distances.

4215

4210

42.00

41.95

Output Data Submarine Canon Radial Distance 0.75

330
Longitude

400

200

Meters

-200

-400

-600

Fig. 52 Resultats de IDW amb Coordenades Geografiques i Radi 0.75 Km.

46

RBF

RBF B
2.50 5.00 10.0 25.0 50.0 75.0
Absolute Error 2755.2682 | 3078.5692 | 1406.1776 | 2272.5138 55.5511 34.1628
Relative Error 403.3842 | 491.6155 | 231.1720 | 305.3757 8.8751 4.8934
|z Real — z Interp]|| | 46595.813 | 52063.329 | 23780.622 | 38431.696 | 939.4545 | 577.7464

Taula 14. Diferents Errors calculats en les interpolacions RBF, segons el parametre (3.

Output Data Cap de Creus Beta 75.0

42.15

600

400
a2.10
200
§42‘05 o £
5 3
L] =
-200
42.00
-400
4195
-600
315 320 325 330 335 3.40 345
Longitude
Fig. 53 Resultats de RBF amb un 3 de 75.
10 lags 20 lags 30 lags
Ca
,
30000 I . e
Jur
I ol
25000 »J"M
. 1 e
o 20000 . fr
E \'
5
& 15000 7
£ L 1 r
I% 10000 .ff
&
5000 . _f"
0 /
000 002 004 006 008 o010 012 000 002 004 006 008 010 012 000 002 004 006 008 010 012
Lag (-)

Fig. 54 SemiVariograma Empiric amb diferents valors de lags.

47

Model: spherical; RMSE: 934.35 Model: exponential; RMSE: 2874.29 Model: gaussian; RMSE: 1511.16
- -

30000 30000 30000
3

— 25000 — 25000 — 25000
z z T
s H 13
£ £ £
3 20000 3 20000 & 20000
£ £ E
3 3 3
£ 15000 £ 15000 £ 15000
g 2 2
H H £
E 10000 E 10000 £ 10000
2 a ¥

5000 ’/ 5000 5000

000 002 04 006 008 Dlo 012 000 002 004 006 008 010 012 000 002 004 006 008 0l0 012
Lag (-] Lag () _Lag (-}
Model: matern; RMSE: 802.19 Model: stable; RMSE: 682.45 Model: cubic; RMSE: 1561.70
~ i

20000 30000 20000
= 25000 = 25000 — 25000
A A g
s s g
2 2 2
2 20000 % 20000 % 20000
E E E
3 g
£ 15000 £ 15000 £ 15000
] 5]
£ 10000 E 10000 E 10000
2 £ ¥

5000 5000 5000

o . . ' 0 . ;
000 002 004 006 008 010 012 000 002 004 006 008 0lo o012 000 0D2 0D4 006 008 010 012
Lag) Lag 1) Lag ()

Fig. 55 SemiVariogrames empirics i teorics amb el calcul del RMSE corresponent.

Kriging

Spherical | Exponential | Gaussian | Matern

Stable

Cubic

Absolute Error

16.6053 16.63903 45.9315 15.8419

15.7010

15.8485

Relative Error

2.3900 2.3951 6.5934 2.6950

2.3860

2.6928

Iz Real — z Interpl|| 280.8226 281.3915 | 776.7734 | 267.9111

265.5290

268.0232

Taula 15. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents

models.
Output Data Cap de Creus Kriging Spherical
4215
42.10
§ 4205
2
5
42.00
41.95

315 320 325 330 335 340 345
Longitude

Fig. 56 Resultat de la interpolacio per Kriging Esféric.

Meters

-200

-400

-600

48

9.1.4 GIJON

Input Points Data = 561

Validation Points Data = 57

Output Points Data = 127 449

Input Data La Palma

® 8 8 & 0 0 0 000N e eSS e e 30
43.5350 ® 8 8 9 2 0 0 S S S S S SN SN S SO S eSO SRS eSO SO BSBOS
® 9 & 8 0 0 0 S0P OSSN e eSS eSS e 20
N'..‘ﬂ.. ® 8 & 5 % 0 0000 s e
553‘5275 ® & 8 & 0 0 0 00 S S BN é
. C e tececamasessciieseeeeecceaaanans
C et deeeaaeeiaaaeeeeeeeeeeaeeeaann
43.5225 ® e e e 000000 e ® % 0 00 0 00 e e e e e e e e eEe
-5.680 -5.675 -5.670 -5.665 -5.660 -5.655 -5.650 -5.645
Longitude -10
Fig. 57 Representacid visual del Data Set de la platja de Gijon.
IDW
IDW Radial Distances (Km)
0.10 0.25 0.50 1.00 2.50 5.00
Absolute Error 2.6766 3.6371 4.6975 5.5016 6.0899 6.1058
Relative Error 11.8573 18.3008 23.1113 29.0691 42.9566 43.2768
||z Real — z Interpll 20.2085 27.4597 35.4653 41.5364 45.9781 46.0979

Taula 16. Diferents Errors calculats en les interpolacions IDW, segons el parametre Radial
Distances.

Output Data La Palma Radial Distance 0.1

43.5375

43.5350

43.5325

43.5300 1

43.5275

Latitude

43.5250 1

43.5225

43.5200

-5.680

-5.675

-5.670

-5.665
Longitude

-5.660

-5.655

-5.650

-5.645

Fig. 58 Resultats de IDW amb Coordenades Geografiques i Radi 0.10 Km.

20

Meters

49

RBF B

25.0 50.0 75.0 100 150 200
Absolute Error 519.7808 | 1130.1413 | 104.2365 40.6662 5.3967 4.0545
Relative Error 6036.0833 | 20998.649 | 1310.4851 | 811.7448 30.0879 19.9041
lz Real — z Interpl|| | 3924.2593 | 85323801 | 786.9687 | 307.0236 40.7445 30.6111

Taula 17. Diferents Errors calculats en les interpolacions RBF, segons el parametre S.

Output Data Gijon Beta 200

50
43.540
25
43535 0
-25
g 43.530]
H -0 3
-75
43.525
-100
43.520 -125
e e 0 0
-5.675 -5.670 -5.665 ~5.660 -5.655 ~5.650
Longitude
Fig. 59 Resultats de RBF amb un 3 de 200.
20 lags 30 lags
160 . o
.
140 | . * .
. K
120 . . " . .
. . ..
d .
o 1007 . . .
Y .
2 . . e
& 80 . ot
@ ° .
= et
£ 60 . %
& . .
40 1 .
.
20 4 . . |®
.
. . *
ol 1. 1.

0.000 0002 0.004 0006 0008 0010 0.012 0014 0000 0002 0.004 0.006 0008 0010 0.012 0014 0000 0002 0004 0006 0008 0010 0012 0014

Lag (-)

Fig. 60 SemiVariograma Empiric amb diferents valors de lags.

50

Model: spherical; RMSE: 15.06

Model: exponential; RMSE: 23.33

Model: gaussian; RMSE: 12.83

10 10 120
~ 120 _ 120 — 120
g T g
g g H
£ 100 £ 100 £ 100
3 H 3
£ E E
g 80 y 80 g 80
. £ E
E E
3 a0 ¥ a0 3 a0
20 20 20
0000 0002 0004 0006 0008 0010 0012 0014 0000 0002 0004 0006 0008 0010 0012 0014 0000 0002 0004 0006 0008 0010 0012 0014
Lag (-] Lag (-} Lag (-}
Model: matern; RMSE: 12.98 Model: stable; RMSE: 11.57 Model: cubic; RMSE: 15.91
10 120 140
~ 120 — 120 ~ 120
c T T
g g g
] g g
£ w0 £ 100 £ w0
3 H 3
£ £ £
3 80 y 8 y 8
g £
§ o0 § o0 5 o0
£ £ H
7w % 3 @
20 20 20

o
0000 0002 0004 0006 0008 0010 0012 0014
Lag -]

0000 0002 0004 0006 0008 0010 0012 0014

o
0.000 0.002 0.004 0006 0008 0010 0012 0014
Lag (4

Fig. 61 SemiVariogrames empirics i teorics amb el calcul del RMSE corresponent.

Kriging

Spherical | Exponential | Gaussian | Matern | Stable | Cubic
Absolute Error 2.8492 2.8802 36019 | 3.4312 | 3.7541 | 2.6898
Relative Error 12.9267 13.1875 21.7695 | 19.5155 | 23.7098 | 12.5136
|z Real — z Interp|| 21.5113 21.7456 271938 | 25.9050 | 28.3433 | 20.3075

Taula 18. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents

Output Data Gijon Kriging Spherical

models.

43.540
43535
8 43530
2
3
43.525
43.520 ¢
—————————————— °
— eeo oo
-5.680 -5.675 -5.670 ~5.665 -5.660 -5.655 -5.650 ~5.645
Longitude

Fig. 62 Resultat de la interpolacio per Kriging Esfeéric.

Meters

51

9.2 CODI PYTHON
El codi estara penjat al seglient repositoris de GitHub,

https://github.com/PolBanosCastello/Topographic-and-Bathymetric-Interpolation-Models.git

el qual s’anira actualitzant fins optimitzar-lo el maxim possible, ja que seguiré treballant amb el
codi fins a deixar-lo llest per a I’Us public de qualsevol usuari.

Pero per a 'avaluacio del treball deixaré el codi en els seglients apartats.

9.2.1 IDW_multiprocessing.py
import time

import pandas as pd

import matplotlib.pyplot as plt

from mpl toolkits.axes_gridl import make_ axes_locatable
from mpl toolkits.mplot3d import axes3d
from rich import print as rprint

import numpy as np

import os

from tgdm.auto import tgdm

import math

from math import radians

from concurrent import futures

from rich.progress import Progress
import multiprocessing as mp

def cm to_inch(value):
return value/2.54

plt.rcParams["figure.figsize"] = [cm to_inch(40), cm to_inch(20)]

class IDW:
point_folder = f'./Points/Subset NAME OF DATASET/'
if not os.path.exists(point folder):
os.mkdir (point folder)
else:
pass

max_worker = mp.cpu_count() * 2

staticmethod
def multiprocess_index_handler (index, handler, args):
result = handler(*args) # call the handler
return index, result # add index to the result

def multiprocess(self, arg list, handler, max_workers=20, text: str = "p D I
index = 0 # thread index
ctx = mp.get_context ('spawn'")
with futures.ProcessPoolExecutor (max workers=max workers, mp_ context=ctx) as executor:
processes = [] # empty thread list
results = [] # empty list of thread results
for args in arg list:
submit tasks to the executor and append the tasks to the thread list
processes.append (executor.submit (self. multiprocess index handler, index, handler,
args))
index += 1

with Progress() as progress: # Use Progress() to show a nice progress bar
task = progress.add task(text, total=index)
for future in futures.as completed(processes):
future_result = future.result() # result of the handler
results.append(future_ result)
progress.update (task, advance=1l)

sort the results by the index added by _ threadify index handler

sorted results = sorted(results, key=lambda a: a[0])

final results = [] # create a new array without indexes
for result in sorted results:

final results.append(result[1])
return final results

def init (self, data_frame, df_validation, resolution_factor=10, reduction_scale=1):
self.df = pd.DataFrame(data frame.values, columns=['X', 'Y',6 '7'])

self.reduction scale = reduction scale

self.df['X"] = self.df['X'] * self.reduction_scale
self.df['Y"'] = self.df['Y'] * self.reduction_scale

52

https://github.com/PolBanosCastello/Topographic-and-Bathymetric-Interpolation-Models.git

def

self.num points = len(self.df)

self.resolution factor = resolution_ factor

self.df validation = df validation

self.df validation['X'"'] = self.df validation['X'] * self.reduction_scale
self.df validation['Y'] = self.df validation['Y'] * self.reduction_scale

x min, x max = int(np.round(min(self.df['X'])
y min, y max = int(np.round(min(self.df['Y'])

)), int(np.round(max(self.df['X'])))
)), int(np.round(max(self.df['Y'])))

num_resolution = ((x_max - x_min) * self.resolution_factor)
x = np.linspace(x _min, x max, num=int(num resolution))
y = np.linspace(y min, y max, num=int(num resolution))

for a in range(0, len(self.df validation['X'])):

X =
y =

np.append(x, self.df validation['X'][a])
np.append(y, self.df validation['Y'][al)

self.df['X'] = self.df['xX'] / self.reduction_scale
self.df['Y'] = self.df['Y'] / self.reduction_scale

self.df validation['X'] = self.df validation['X'"] / self.reduction_scale
self.df validation['VY'] = self.df validation['VY'] / self.reduction_scale
x =x / self.reduction_scale

y=vy/ self.reduction_scale

rprint (f'Min-Max X: {round (min(x), 2)} - {round(max(x), 4)}")

rprint (f'Min-Max Y: {round (min(y), 2)} - {round(max(y), 4)!}!")

rprint (f'Size X: {x.size} - Size Y: {y.size}")

self.xx, self.yy = np.meshgrid(x, y)

self.zz = np.empty(self.xx.shape)

self.zz[:] = np.nan

calculate list dist(self, xx_ij, yy_ij, type_coordinates, earth_radius=6371):
list dist = []
if type coordinates == 'GPS':

for

a in range (0, len(self.df['X'])):
d = earth_radius * np.arccos((np.cos(radians(90-yy_ij)) * np.cos(radians(90-

self.df['Y'][al)) +

np.sin(radians(90-yy_ij)) * np.sin(radians(90-

self.df['Y'][a]l)) *

def

np.cos (radians (xx_ij-self.df['X'][al))))

if d == 90:
rprint (d)
if d '= 0:

b = [self.df['X"][a], self.df['Y'][a], self.df['Z'][a], d]
list_dist.append (b)
rprint (b)

input()

if type coordinates == 'UTM':

for

df dist

a in range (0, len(self.df['X'])):
if math.dist((self.df['X'][a]l, self.df['Y']l[al), (xx ij, yy ij)) '= 0:
b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a]l,
math.dist ((self.df['x"'][a]l, self.df['Y'][al), (xx ij, yy i3))]
list_dist.append(b)
= pd.DataFrame(list dist, columns=['Xx',6 'v',6 'Z', 'distance'l])

df_dist_by dist = df_dist.sort_values('distance')
return df dist by dist

execute method no multiprocessing(self,

distance,

file name,
type_coordinates,
earth_radius=6371,
show_prints=False) :

global dist 0 _value

rprint (f'Execute Inverse Distance Weight Interpolation with Radial Distance = {distance}')

rprint (f'Process of IDW method with Radial Distance = {distance} ...'")
for i in tgdm(range (0, self.zz.shape[0])):

for

j in range (0, self.zz.shape[l]):
if show_prints:
print(i, j)
t = time.time ()
rprint ('[bold]XX - YY', i, '-', j, self.xx[i, j], self.yy[i, J1)
list_coord_and_dist = []
list_dist = []

if type_coordinates == 'GPS':
for a in range(0, len(self.df['X'])):
d = earth_radius * np.arccos(
(np.cos(radians (90 - self.yy[i, j])) * np.cos(radians(90 -

self.df['Y'][a])) +

53

np.sin(radians (90 - self.yy[i, J1)) * np.sin(radians (90 -
self.df['Y'][a]l)) *
np.cos(radians(self.xx[i, j] - self.df['X']1[al))))
if d '= 0:
b [self.df['X"']1[a], self.df['Y'][a], self.df['Z'][a], self.xx[1, JI,

self.yyl[i, j1, d]
list dist.append(b)

if type coordinates == 'UTM':
for a in range(0, len(self.df['X'])):
if math.dist((self.df['X"'][a]l, self.df['Y'][al), (self.xx[i, J], self.yyli,

i) t'= 0:

b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a]l,

math.dist((self.df['X"'][a], self.df['Y'][al), (self.xx[1, JI1,

self.yy[i, j1))]1

list_dist.append (b)

list_dist = sorted(list_dist)
list_coord and dist = sorted(list coord and dist)

if show_prints:
rprint (f'Radi = {distance}:', len(list_dist))
rprint (f'Head list distances: {list_dist[:5]}")

df_dist = pd.DataFrame(list_dist, columns=['X',6 'Y',6 'Z', 'distance'l)
df_dist_by dist = pd.DataFrame (df dist.sort_values('distance').values,
columns=['X', 'Y', 'Z', 'distance'l])

rprint (df dist by dist)
input()

if show_prints:
rprint (df dist by dist)

vect w = []
vect z = []

dist 0 = False
for a in range (0, len(df dist by dist)):
d = (math.dist((self.df['X"'][a]l, self.df['Y'][al), (self.xx[i, jl, self.yyli,
1)) ** 2)

if d ==
dist_0 = True

else:
w =1/ (df_dist_by dist['distance'][a] ** 2)

vect_w.append (w)
vect_z.append(df_dist_by dist['Z'][a])

if dist_0:
if show_prints:
print(f'[red]Radi = {distance}:', 'Diatance 0', '-->',

self.xx[i, j]1, self.yy[i, j], dist 0 value)
self.zz[i, j] = dist 0 value
time.sleep(1l.5)

else:

if len(vect w) ==
if show_prints:
rprint (f'[yellow]Radi = {distance}:', 'nan')
self.zz[i, j] = float("nan"
time.sleep(1.5)

else:
if show_prints:
rprint ('Before Normalization: Sum W', sum(vect_w), type(sum(vect_w)))
vect_w = (vect_w / sum (vect_w))
if show_prints:
rprint ('After Normalization: Sum W', sum(vect w), type(sum(vect w)))
vect_wz = np.array(vect_w) * np.array(vect_z)
self.zz[i, j] = sum(vect_wz)

if show_prints:
a=1
print(a)
rprint ('Interpolation Finish.\nTransform Mesh into DataFrame')
list_p = [1]
for a in range(0, self.zz.shape[0]):
for b in range(0, self.zz.shape[l]):
P = [self.xx[a, b], self.yyla, bl, self.zz[a, b]l]
list_p.append (P)

self.df new = pd.DataFrame(list_p, columns=['X',6 'Y', 'Z'])

54

self.save_method(file_name, dist=distance)
rprint (£'Finish Radial Distance = {distancel}"')
return self.df new

def execute method(self, distance, file name, show prints=False):

rprint (f'Execute Inverse Distance Weight Interpolation with Radial Distance = {distance}')
argument list = []
list = np.arange(0, self.max worker + 1)
index = 1
for i in list:
if i '= list[-1]:
inici = int(self.zz.shapel[0] / self.max_worker) * (index - 1)
final = int(self.zz.shape[0] / self.max_worker) * index
index += 1
else:
inici = int(self.zz.shape[0] / self.max_worker) * self.max worker

final = self.zz.shape[0]

myargs = [distance, file name, 'UTM', inici, final]
argument_list.append(myargs)

rprint (f'Multiprocessing of IDW method with Radial Distance = {distance} ...")

results = self.multiprocess(argument list, self.execute method multiprocessing,
max workers=self.max worker)
list_res = []
for result in results:
list_res += result

df lists = pd.DataFrame(list res, columns=['Z'])
df_lists.to_csv(f'{self.point_folder}IDW optim method.csv',
index=False, header=True)

zz = np.array(list res).reshape(self.zz.shape[l], self.zz.shape[0])
rprint(zz)

rprint ('Interpolation Finish.\nTransform Mesh into DataFrame')
list p = [1]

for a in range(0, self.zz.shape[0]):
for b in range(0, self.zz.shape[l]):
P = [self.xx[a, b], self.yyl[a, bl, zz[a, b]]
list_p.append(P)

self.df new = pd.DataFrame(list_p, columns=['X', 'v', 'Z'])
self.save _method(file name, dist=distance)

rprint (f'Finish Radial Distance = {distance}')
return self.df new

def execute_method multiprocessing(self,
distance,
file_name,
type coordinates,
start,
end,
earth radius=6371,
show_prints=False):

rprint (f'[green]Start Multiprocessing Interpolation with Radial Distance {distance} -->
{start} - {end} -- {self.zz.shape[0]}")

list_results = []

list_results_only = []

for i in tgdm(range (start, end)):

for j in range (0, self.zz.shape[l]):
if show_prints:
print(i, j)

list_res_dist = []
list_dist = []

if type_coordinates == 'GPS':
for a in range(0, len(self.df['X'])):

alfa = (np.cos(radians(90 - self.yy[i, j])) * np.cos(radians (90 -
self.df['Y'][a]l)) +
np.sin(radians (90 - self.yy[i, Jj1)) * np.sin(radians (90 -
self.df['Y'][a])) *
np.cos (radians(self.xx[i, j] - self.df['X"'][a])))
d = earth_radius * np.arccos(alfa)

if d <= distance:

b = [self.df['X"][a]l, self.df['Y'][a], self.df['Zz"][a]l, self.xx[i, j],
self.yyl[i, j1, dl

list dist.append(b)

list res _dist.append(d)

if type coordinates == 'UTM':

for a in range(0, len(self.df['X'])):
d = math.dist((self.df['X"][a]l, self.df['Y'][al), (self.xx[i, j], self.yyli,
in)
if d <= distance:
b = [self.df['X'][a], self.df['Y'][a]l, self.df['Z'][a], self.xx[1, jI,
self.yyl[i, j1, d]
list res _dist.append(d)
list_dist.append (b)

list_dist = sorted(list_dist)

if show_prints:
rprint (f'Radi = {distance}:', len(list_dist))
rprint (f'Head list distances: {list _dist[:5]}")

df_dist = pd.DataFrame(list_dist, columns=['X',6 'Y',6 'Z', 'Mesh XX', 'Mesh YY',
'distance'])
df_dist_by dist = pd.DataFrame (df dist.sort_values('distance').values,
columns=['X"', 'Y', 'Z', '"Mesh XX', 'Mesh YY',
'distance'])

vect w = []
vect_z [1
dist 0 = False

for a in range (0, len(df dist by dist)):
d = df dist by dist['distance'][al

if d ==
dist 0 = True
if show_prints:
rprint (f'[red]Radi = {distance}:', 'Diatance 0', '-->'",
self.xx[i, j], self.yyli, j], df_dist by dist['Z'][a])
list_results.append((i, j, df dist by dist['Z'][a], 'd = 0"))
list_results_only.append(df dist by dist['Z"'][a])
else:
if not dist 0:
w =1/ (df_dist_by dist['distance'][a] ** 2)
vect_w.append (w)
vect_z.append(df_dist by dist['Z'][al)

if not dist_O0:

if len(vect_w) ==
if show_prints:
rprint (f'[yellwo]Radi = {distance}:', 'nan')
list_results.append((i, j, 'nan', 'len(vect) = 0'))
list_results_only.append('nan')

else:

if show_prints:

rprint ('Before Normalization: Sum W', sum(vect w), type(sum(vect w)))
vect w = (vect w / sum(vect w))
if show_prints:

rprint ('After Normalization: Sum W', sum(vect w), type(sum(vect w)))
vect wz = np.array(vect w) * np.array(vect z)
if show_prints:

rprint (f' [blue]Radi = {distance}:', sum(vect_wz))
list_results.append((i, j, sum(vect_wz), 'calcule w'))
list_results_only.append(sum(vect_wz))

if show_prints:

a=1
print(a)
rprint (f' [red]Finish Multiprocessing Interpolation with Radial Distance {distance} -->
{start} - {end} -- {self.zz.shape[0]}. {len(list_results)}')

return list_results_only
def save_method(self, name, dist):
self.df new.to_csv(f'{self.point_folder}IDW optim method {name} Dist {dist} {self.num points} points.
csv',
index=False, header=False)

def load_last_method(self, name, dist):

self.df new = pd.read_csv(

56

f'{self.point_folder}IDW optim method {name} Dist {dist} {self.num_points} points.csv',

header=None)

self.df new.columns = ['X', 'Y', '2']

return self.df new

def calculate error(self, name_save, method='MSE', show_plot=False):

def

comp
for

self.df vali

min_z valida
df c

'Z_Error_ Abs

'Z_Error_Rel

find nearest(df predict, value x, value y, value z, min z validate):
if value_z == 0:
value_z = 0.00001

df predict x array = df predict.X.to numpy()
df predict y array = df predict.Y.to numpy()

idx_x = (min(np.abs(df predict_x_ array - value_x)))
idx_y = (min(np.abs(df predict_y array - value_y)))

for x val in df predict_ x array:
if np.abs(x_val - value_x) == idx_x:

x = x val

for y val in df predict_y array:

if np.abs(y_val - value_y) == idx_y:
y =y val
df aprox = df predict[(df predict['X'] == x) & (df predict['Y'] == y)]

array aprox = df aprox.to_ numpy()

escal_z = abs(min_z_validate) * 1.2

val z escal = (value z + escal z)

int_z escal = (array aprox[0][2] + escal z)

e a z escal = abs(val z escal - int _z escal)

e r z escal = (e a z escal / abs(val z escal)) * 100
1st = [value x, value y, value z,

array aprox[0][0], array aprox[0][1], array aprox[O0][2],

abs (value x - array aprox[0][0]), abs(value y - array aprox[0][1]), e a z escal,

((abs (value x - array aprox[0][0]) / abs(value x)) * 100),
((abs(value_y - array aprox[0][1]) / abs (value_y)) * 100),
e r z escal,
[value_z, array_aprox[0][2], (abs(value_z - array aprox[0][2])),
((abs (value_z - array_aprox[0][2]) / abs (value_z)) * 100)]]
return lst

arative = []
i in tgdm(range (0, len(self.df validation.values))):
comparative.append(find nearest (self.df new, self.df validation.X[i],
dation.Y[i],
self.df validation.Z[i],
te=min(self.df validation.Z)))
omparative = pd.DataFrame (comparative,
columns=['X Real', 'Y Real', 'Z Real',
'X _Interp', 'Y Interp', 'Z Interp',

'X Error_Absolute', 'Y Error Absolute',

olute',

'X _Error Relative', 'Y Error Relative',

ative',
'List Real 7s'])

df comparative.to csv(f'{self.point folder}df comparative {name save} {self.num points} points.csv',

sct

plt.
plt.
plt.
plt.
if s

plt.
sct

plt.
col .
col .
col .
plt.

plt.savefig(f'{self.point_folder}Plot Error Relative {method} {name_save}.png'")

if s
plt.

if m

index=False)
= plt.scatter(df_comparative['X Real'], df_comparative['Y Real'], s=12,
c=df_comparative['Z Error Absolute'], cmap='plasma')
axis('scaled'")
colorbar (sct)
title(f'{name_save} Absolute Error'")

savefig(f'{self.point_ folder}Plot Error Absolute {method} {name_save}.png'")

how_plot:
plt.show()
close()

= plt.scatter(df_ comparative['X Real'], df comparative['Y Real'], s=12,
c=df_ comparative['Z Error Relative'], cmap='plasma')

axis('scaled')

bar = plt.colorbar (sct)

bar.ax.get_yaxis().labelpad = 15

bar.ax.set_ylabel(' % ', rotation=270)

title(f'{name_save} Relative Error')

how_plot:

plt.show()

close()

ethod == 'MSE':

U 1/n % osum((y - y')*%2) 0t
e abs_ x =0

57

e abs_ y =0
e _abs_z =

|
o

e rel x =0
e rel y 0
e rel z 0

for i in tgdm(range (0, len(df comparative))):
print (df comparative.X Dist[i], df comparative.Y Dist[i], df comparative.Z Dist[i])
e abs_x += df comparative.X Error Absolute[i] ** 2
e abs_y += df comparative.Y Error Absolute[i] ** 2
e abs_z += df comparative.Z Error Absolute[i] ** 2

N

e rel x += df comparative.X Error Relative[i] **
e rel y += df comparative.Y Error Relative[i] ** 2
e rel _z += df comparative.Z Error Relative[i] ** 2

return ((e_abs_x / len(df_ comparative)
(e_abs_z / len(df_ comparative)
((e_rel x / len(df_ comparative)
(e_rel z / len(df_ comparative)

, (e_abs_y / len(df_ comparative)),
), \
, (e_rel y / len(df_ comparative)),
), df_comparative

_————

if method == 'RMSE':
''Yosgrt(l/n * sum((y - y')**2)) '"!
e abs x =0
e abs y =0
e abs z =0

e rel x =0
e rel y
e rel z

nn
o o

for i in tgdm(range(0, len(df comparative))):
print (df comparative.X Dist[i], df comparative.Y Dist[i], df comparative.Z Dist[i]
e abs x += df comparative.X Error Absolute[i] ** 2
e abs_y += df comparative.Y Error Absolute[i] ** 2
e abs _z += df comparative.Z Error Absolute[i] ** 2

e rel x += df comparative.X Error Relative[i] ** 2
e rel y += df comparative.Y Error Relative[i] ** 2
e rel z += df comparative.Z Error Relative[i] ** 2

return ((math.sqgrt(e_abs_x / len(df comparative))), (math.sqgrt(e_abs_y /
len(df_comparative))),
(math.sqgrt(e_abs_z / len(df comparative)))), \
((math.sqrt(e_rel x / len(df comparative))), (math.sgrt(e_rel_ y /
len(df_comparative))),
(math.sgrt(e_rel_z / len(df_comparative)))), df_comparative

if name__ == " main_ ":
point folder = f'./Points/Subset NAME OF DATASET/'
if not os.path.exists(point folder):
os.mkdir (point folder)
else:
pass

point folder dataset = f'./Points/'

if not os.path.exists(point folder dataset):
os.mkdir (point folder dataset)

else:
pass

FILE_NAME = 'NAME OF DATASET'

RES_FACT =

SCALE_FACT = 1

list_dist = [0.50, 1.00, 2.50, 5.00, 10.0, 15.0, 20.0]
ERROR_METHOD = 'RMSE'

DO_INTERPOLATE = True

CALCULATE_ERROR = True

SHOW_PLOTS = False

df = pd.read_csv(f'{point folder dataset}{FILE NAME}.csv', sep=';")
rprint (df)

plt.scatter(df['X"'], df['Y'], c=df['Z2'], cmap='plasma')
plt.title('Input Data NAME OF DATASET')

plt.ylabel ('Latitude’')

plt.xlabel('Longitude")

col_bar = plt.colorbar()

col_bar.ax.set_ylabel (' Meters ")

plt.axis('scaled")
plt.savefig(f'{point_folder}Plot TInput Data.png')
plt.show()

num_of points = int(len(df) / 1.10)
df_subset = df.sample(n=num_of_ points, random_state=l)

58

Y, 7))

df_drop = pd.DataFrame (df.drop(df_subset.index) .values, columns=['X",
fit IDW = IDW(df subset, df drop, resolution factor=RES FACT, reduction scale=SCALE FACT)
ddff = fit IDW.execute method no multiprocessing(distance=100,

type coordinates='UTM',

file name=FILE_NAME,

show_prints=True)

if DO_INTERPOLATE:
dfs = []
rprint ('

Execute Method

for NUM DIST in list_dist:

rprint (f'Number of Subset points are {len(df subset)}, '
f'and the number of Validation points are {len(df_drop)}"')

rprint ()

rprint (' ----- Variables - ----- ")

rprint ('File Name: ', FILE_NAME)
rprint ('Resolution Factor: ', RES_FACT)
rprint ('Factor Scale: ', SCALE_FACT)

rprint ('Distance to the firsts: ', NUM _DIST)

df =
dfs.append (df)

rprint (dfs)

if CALCULATE ERROR:

rprint (' -——----------——mmm Calculate Errors ---
dic_errors = {

"IDW Distances": {}
}

for NUM DIST in list dist:
rprint ('Calculating Errors of Dist', NUM DIST)

fit IDW.execute method(distance=NUM DIST, file name=FILE_NAME)

ddff = fit IDW.load last method(FILE NAME, dist=NUM DIST)
plt.scatter(ddff['x'], ddff['Y'], c=ddff['Z'], cmap='plasma')
plt.title(f'Output Data NAME OF DATASET Radial Distance {NUM_DIST}'")
plt.ylabel('Latitude’')

plt.xlabel('Longitude")

col bar = plt.colorbar()

col:bar.ax.set_ylabel(' Meters ')

plt.axis('scaled")

plt.savefig(f'{point_ folder}Plot Output Data {NAME_ OF DATASET} Radial Distance {NUM DIST}.png'")

if SHOW_PLOTS:
plt.show()
plt.close()

abs_error, rel_ error, df_error =
name_save=f'IDW Dist {NUM_DIST}')

print (f'Error Absolut XYZ
abs_error[l],

{ERROR_METHOD} IDW Dist

abs_error[2])
print (f'Error Relatiu XYZ
rel error[l],

{ERROR_METHOD} IDW Dist
rel error[2])

vec norm real =
vec_norm_interpolate =

print('La Norma del Vector Z_Real:
print('La Norma del Vector Z_Interp:

print('Diferencia de Normas Real - Interp:
vec_norm_interpolate), 4))
print (' (Norma Real - Norma Interp)/ (Norma Real):

np.linalg.norm(df error['Z Real'])
np.linalg.norm(df error['Z

fit IDW.calculate error (method=ERROR METHOD,

= {NUM _DIST}: ', abs_error[0],
= {NUM _DIST}: ', rel error[0],
Interp'])

', round(vec_norm_real, 4))
', round(vec_norm_interpolate, 4))
', round((vec_norm_real -

'
’

round(((vec_norm_real - vec_norm_interpolate)/vec_norm_real), 4))

print('La Norma (Vector Z Reals - Vector Z Interp:
round((np.linalg.norm((df_error['Z Real'] -

dic = {
"Absolute Error": {

"X": np.round(abs_error[0], 7),
"Y": np.round(abs_error[1l], 7),
"7": np.round(abs_error[2], 7),
Y,
"Relative Error": {
"X": np.round(rel_error[0], 7),
"Y": np.round(rel_error[l], 7),
"7": np.round(rel_error[2], 7)

I

"Norma Real": np.round(vec_norm_real, 7),

'
i

df error['Z Interp'l))), 4))

"Norma Interp": np.round(vec_norm_interpolate, 7),

" (Norma Real) - (Interp)":
" (Norma Real - Norma Interp)/ (Norma Real)":

np.round((vec_norm_real - vec_norm_interpolate), 7),

59

np.round(((vec_norm_real - vec_norm_interpolate) / vec_norm_real), 7),
"Norma (Vector Reals - Vector Interp)":
np.round((np.linalg.norm((df error['Z Real']l - df error['Z Interp'l))), 7)
}

dic_to_print = {
"Absolute Error": np.round(abs_error[2], 7),
"Relative Error": np.round(rel error[2], 7),
"Norma (Vector Reals - Vector Interp)": np.round(
(np.linalg.norm((df error['Z Real'] - df error['Z Interp']l))), 7)
}

dic_errors['IDW Distances'][NUM DIST] = dic_to_print

plt_z = ddff.pivot_ table(index='X', columns='Y', values='Z").T.values
X_unique = np.sort(ddff.X.unique())

Y unique = np.sort(ddff.Y.unique())

plt_x, plt_y = np.meshgrid(X_unique, Y_unique)

rprint (plt_x.shape)
rprint (plt_y.shape)
rprint (plt_z.shape)

if plt_x.shape == plt_y.shape == plt_z.shape:
try:
fig = plt.figure()
ax = fig.add subplot(111)
ct = plt.contourf(plt x, plt y, plt z, cmap='plasma')
cs = plt.contour(plt x, plt y, plt z, levels=[0])
ax.clabel (cs, fontsize=8)
plt.axis('scaled")
plt.colorbar(ct)
plt.title(f'IDW Distances {NUM DIST} Simulate')
plt.savefig(f'{point_folder}Plot IDW Distances_ {NUM DIST}.png'")
if SHOW PLOTS:
plt.show()
plt.close()
except:
rprint (f'Error in plot: IDW Distances {NUM DIST} Simulate')

fig = plt.figure()
ax = fig.add_subplot(111)
ct = plt.contourf(plt x, plt y, plt_z, cmap='plasma')
cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])
ax.clabel (cs, fontsize=8)
plt.scatter(df_drop['X'], df _drop['Y'], s=12, c='red")
plt.axis('scaled")
plt.colorbar(ct)
plt.title(f'IDW Distances {NUM _DIST} Simulate vs Validate')
plt.savefig(f'{point_folder}Plot IDW Distances {NUM DIST} simulate vs validate.png')
if SHOW_PLOTS:
plt.show()
plt.close()

Fig SubPlot Errors

fig, (axl, ax2) = plt.subplots(l, 2)

ct = axl.contour(plt x, plt y, plt z, colors='k')

sct = axl.scatter(df error['X Real'], df error['Y Real'], s=12,
c=df error['Z Error Absolute'], cmap='plasma')

axl.clabel (ct, fontsize=8)

axl.title.set text('Absolute Error')

axl.axis('scaled")

dividerl = make axes locatable (axl)

caxl = dividerl.append_axes("right", size="5%", pad=0.1)

col bar = plt.colorbar(sct, ax=axl, cax=caxl)

col _bar.ax.get_yaxis().labelpad = 15

col _bar.ax.set_ylabel (' meters ")

ct = ax2.contour(plt_x, plt_y, plt_z, colors='k'")

sct = ax2.scatter(df_error['X Real'], df _error['Y Real'], s=12,
c=df_error['Z Error Relative'], cmap='plasma')

ax2.clabel (ct, fontsize=8)

ax2.title.set_text('Relative Error')

ax2.axis('scaled")

divider2 = make_axes_locatable (ax2)

cax2 = divider2.append axes("right", size="5%", pad=0.1)

col bar = plt.colorbar(sct, ax=ax2, cax=cax2)

col_bar.ax.get_yaxis().labelpad = 15

fig.suptitle(f'Errors Distribution of IDW Distance = {NUM DIST}', fontsize=16)

plt.savefig(f'{point_folder}Plot Errors Distribution IDW_ Distance_ {NUM DIST}.png")
if SHOW_PLOTS:

plt.show()

plt.close()

fig = plt.figure()

ax = fig.add_subplot (111, projection='3d")

X, Y, Z = axes3d.get_test_data(0.05)

ct3d = ax.contour(plt_x, plt_y, plt_z, levels=[0])
ax.clabel (ct3d, fontsize=9, inline=l)

60

ax.scatter(df_error['X Real'], df_error['Y Real'l, df_error['Z Interp'l,
label='Interpolate Values')
ax.scatter(df error['X Real'], df error['Y Real'], df error['Z Real'l],
label="'Real Values')
plt.legend(loc="best")
plt.title(f'3D Compare Real - Interpolate IDW Distance = {NUM DIST}')
plt.savefig(f'{point folder}Plot Errors 3D Compare IDW Distance {NUM DIST}.png'")
if SHOW PLOTS:
plt.show()
plt.close()

rprint (dic_errors)

61

9.2.2 RBF_multiprocessing.py

import pandas as pd

import matplotlib.pyplot as plt

from mpl toolkits.axes_gridl import make_ axes_locatable
from mpl_ toolkits.mplot3d import axes3d
from rich import print as rprint

import numpy as np

import os

from tgdm.auto import tgdm

import math

from concurrent import futures

from rich.progress import Progress
import multiprocessing as mp

def cm_to_inch(value):
return value/2.54

plt.rcParams["figure.figsize"] = [cm_to_inch(40), cm_to_inch(20)]

class RBI:
point_folder = f'./Points/Subset NAME OF DATASET/'
if not os.path.exists(point_ folder):
os.mkdir (point_folder)
else:
pass

max_worker = mp.cpu_count() * 2
tati >d

def multiprocess_index_handler (index, handler, args):

wan

This function ad the index to the return of the handler function. 1 to sort the
results of a
multi-th ation
:p ¢ to be returned
:p “tion ha
:param ion handler
:return: tu is whatever the handler function returned
result = handler(*args) # call the handler
return index, result # add index to the result
def multiprocess(self, arg list, handler, max workers=20, text: str = "progress..."):

nun

:param hand

tparam max
:return
iparanm
index = 0 # thread index
ctx = mp.get context('spawn')
with futures.ProcessPoolExecutor (max workers=max workers, mp_ context=ctx) as executor:
processes = [] # empty thread list
results = [] # empty list of thread results
for args in arg list:
submit tasks to the executor and append the tasks to the thread list
processes.append (executor.submit (self. multiprocess index handler, index, handler,
args))
index += 1

with Progress() as progress: # Use Progress() to show a nice progress bar
task = progress.add task(text, total=index)
for future in futures.as_completed(processes):
future_result = future.result() # result of the handler
results.append(future_ result)
progress.update (task, advance=1)

sort the results by the index added by _ threadify index handler
sorted results = sorted(results, key=lambda a: a[0])

final results = [] # create a new array without indexes
for result in sorted results:

final results.append(result[1])
return final results

def _ init_ (self, data_frame, df_validation, resolution_factor=10, reduction_scale=1):
self.df = pd.DataFrame(data_frame.values, columns=['X', 'v',6 'Z2'])
self.reduction_scale = reduction_scale

self.df['X"'] = self.df['X"'] * self.reduction_scale
self.df['Y'] = self.df['Y'] * self.reduction_scale

62

def
y_3))):
(x_3, v_

def

self.num points = len(self.df)

self.resolution factor = resolution_ factor

self.df validation = df validation

self.df validation['X'] = self.df validation['X'] * self.reduction_scale
self.df validation['Y'] = self.df validation['Y'] * self.reduction_scale

x min, x max = int(np.round(min(self.df['X'])))
y min, y max = int(np.round(min(self.df['Y'])))
num_resolution = ((x_max - x_min) * self.resolution_factor)
x = np.linspace(x _min, x max, num=int(num resolution))
y = np.linspace(y min, y max, num=int(num resolution))

for a in range(0, len(self.df validation['X'])):
x = np.append(x, self.df validation['X'][al)
y = np.append(y, self.df validation['Y'][a])

self.df['X'] = self.df['X"'] / self.reduction_scale
self.df['Y'] = self.df['Y'] / self.reduction_scale

self.df validation['X'] = self.df validation['X'"] / self.reduction_scale
self.df validation['Y'] = self.df validation['VY'] / self.reduction_scale

x =x / self.reduction_scale

y=vy/ self.reduction_scale

rprint (f'Min-Max X: {round (min(x), 2)} - {round(max(x), 4)}")
rprint (f'Min-Max Y: {round (min(y), 2)} - {round(max(y), 4)!}")
rprint(f'Size X: {x.size} - Size Y: {y.size}')

self.xx, self.yy = np.meshgrid(x, y)
self.zz = np.empty(self.xx.shape)
self.zz[:] = np.nan

plt.scatter(self.xx, self.yy)
plt.show()

k_ij(self, x i, y i, x_j, y_3j, equation, beta):

, int(np.round (max(self.df['X']
, int(np.round (max(self.df['Y']

)))
)))

if equation == 'exp':
return math.exp(-(beta * np.linalg.norm(math.dist((x_1i, y 1), (x_J, y_3)))) ** 2)
if equation == 'multi sqgrt':
if math.dist((x_i, y_1i), (x_j, y_3j)) '= np.linalg.norm(math.dist((x_i, y_1i),
print(math.dist((x_1i, y i), (x_3, vy _3)), '---', np.linalg.norm(math.dist((x_1i, y i),

3))))
return np.sqgrt(l + ((beta * math.dist((x_i, y_ 1), (x_3j, y_3))) ** 2))

calculate k matrix(self, points, beta, kernel_ function):
k_matrix = []
z_vector = []

for i in range (0, len(points['X'])):
k _vector = []
z_vector.append([points['Z']1[1]])
t sum = 0
for j in range (0, len(points['X'])):

k _vector.append(self.k ij(points['X']1[1], points['Y'][i], points['X'][]],

points['Y'][31,

beta=beta, equation=kernel function))

k_matrix.append(k_vector)

return np.matrix(k_matrix), np.matrix(z_vector), np.linalg.solve(np.matrix(k_matrix),

np.matrix(z_vector))

def

execute method no multiprocessing(self, beta, kernel function, file name):
rprint (f'Execute Radial Basis Function Interpolation with Beta = {betal}')

M k, V_z, V.w = self.calculate_k matrix(self.df, beta=beta, kernel function=kernel function)

rprint (f'Process of RBF method with Beta = {beta} ...")
for i in tgdm(range (0, self.zz.shape[0])):
for j in range (0, self.zz.shape[l]):

sum _wk = [V_w[a] * self.k ij(self.xx[i, j], self.yyli, j1, self.df['X'][a]l,

self.df['Y'][a]l,

beta=beta, equation=kernel_ function)
for a in range(0, len(self.df['X']))]
self.zz[i, j] = sum(sum_wk)

rprint ('Interpolation Finish.\nTransform Mesh into DataFrame')

list_p = []
for a in range(0, self.zz.shape[0]):
for b in range(0, self.zz.shape[l]):
P = [self.xx[a, b], self.yyla, bl, self.zz[a, b]l]
list_p.append (P)

63

self.df new = pd.DataFrame(list_p, columns=['X',6 'Y', 'Z'])
self.save method(file name, beta=beta)

rprint (f'Finish Beta = {beta}')
return self.df new

def execute method(self, beta, kernel function, file name, show prints=False):
rprint (f'Execute Radial Basis Function Interpolation with Beta = {betal}')

self.M k, self.V_z, self.V_w = self.calculate_k matrix(self.df, beta=beta,
kernel function=kernel function)

argument_list = []
list = np.arange(0, self.max_worker + 1)
index = 1

for i in list:
if i '= list[-1]:

print (i)
inici = int(self.zz.shapel[0] / self.max_worker) * (index - 1)
final = int(self.zz.shape[0] / self.max_worker) * index
print(inici, final, '\n'")
index += 1

else:
print (i)

inici = int(self.zz.shape[0] / self.max worker) * self.max worker
final = self.zz.shape[0]
print(inici, final, '\n'")

myargs = [beta, kernel function, file name, inici, final]

argument list.append(myargs)

if show_prints:
rprint (argument list)

rprint (f'Multiprocessing of RBF method with Beta = {beta} ...")

results = self.multiprocess(argument list, self.execute method multiprocessing,
max workers=self.max worker)

if show_prints:
rprint (results)

list_res = []
for result in results:
list_res += result

if show_prints:
rprint (list_res, len(list_res))

zz = np.array(list_res).reshape(self.zz.shape[l], self.zz.shape[0])
rprint ('Interpolation Finish.\nTransform Mesh into DataFrame')

list p = [1]
for a in range (0, self.zz.shape[0]):
for b in range (0, self.zz.shape[l]):
P = [self.xx[a, b], self.yyla, bl, zz[a, b]l]
list_p.append(P)

self.df new = pd.DataFrame(list p, columns=['X',6 'Y',6 'Z'])
self.save method(file name, beta=beta)

rprint (f'Finish Beta = {beta}')
return self.df new

def execute_method multiprocessing(self, beta, kernel function, file name, start, end,
show_prints=False) :

rprint (£' [green]Start Multiprocessing Interpolation with Beta {beta} --> {start} - {end} --
{self.zz.shape[0]}")

list_results = []
for i in tgdm(range (start, end)):
for j in range (0, self.zz.shape[l]):
if show_prints:
print(i, j)
sum _wk = [self.V_wl[a] * self.k ij(self.xx[i, j], self.yyl[i, j], self.df['X'][a],
self.df['Y'][al,
beta=beta, equation=kernel_ function)
for a in range(0, len(self.df['X']))]
list_results.append (sum(sum_wk))

rprint (f'[yellow]Finish Multiprocessing Interpolation with Beta {beta} --> {start} - {end} --
{self.zz.shape[0]}")

return list_results

64

def save_method(self, name, beta):

self.df new.to csv(f'{self.point folder}RBI optim method {name} Beta {beta} {self.num points} point
csv',
index=False, header=False)

def load last method(self, name, beta):

self.df new = pd.read csv(
f'{self.point folder}RBI optim method {name} Beta {beta} {self.num points} points.csv',
header=None)

self.df new.columns = ['X', 'Y',6 'Z']

return self.df new
def calculate_error(self, name_save, method='MSE', show_plot=False):
def find nearest(df predict, value_x, value_y, value_z, min_z validate):
if value_z == 0:

value_z = 0.00001

df predict_x_array = df predict.X.to_numpy()
df predict_y_array = df predict.Y.to_numpy()

idx x = (min(np.abs(df predict x array - value x)))
idx y = (min(np.abs(df predict y array - value y)))

for x val in df predict_x array:

if np.abs(x val - value x) == idx x:
x = x val

for y val in df predict y array:

if np.abs(y val - value y) == idx y:
y =y val

df aprox = df predict[(df predict['X'] == x) & (df predict['Y'] == y)]
array aprox = df aprox.to_ numpy()
escal_z = abs(min_z_validate) * 1.2
val_z_escal = (value_z + escal_z)
int_z escal = (array aprox[0][2] + escal_ z)
e a z_escal = abs(val_z_escal - int_z_escal)
e r z escal = (e_a_z_escal / abs(val_z_escal)) * 100
lst = [value_x, value_y, value_z,

array_aprox[0][0], array aprox[0][1], array aprox[0][2],
abs (value_x - array_aprox[0][0]), abs(value_y - array aprox[0][1]), e_a_z escal,
((abs(value_x - array_aprox[O][O])/abs(value_x))*lOO),
((abs(value_y - array_aprox[O][l])/abs(value_y))*lOO),
e r z escal,
[value z, array aprox[0][2], (abs(value z - array aprox[0][2])),
((abs(value z - array aprox[0][2])/abs(value z))*100)]1]
return lst

comparative = []
for i in tgdm(range (0, len(self.df validation.values))):
comparative.append(find nearest(self.df new, self.df validation.X[i],
self.df validation.Y[i],
self.df validation.Z[i],
min_z_validate=min(self.df validation.Z)))

df_comparative = pd.DataFrame (comparative,
columns=['X Real', 'Y Real', 'Z Real',
'X_Interp', 'Y _ Interp', 'Z_Interp',
'X_Error Absolute', 'Y Error_ Absolute',
'Z2_Error_Absolute',
'X_Error_Relative', 'Y Error_Relative',
'2_Error_Relative',
'List _Real 7Zs'l])

df_comparative.to_csv(f'{self.point folder}df comparative {name_save} {self.num points} points.csv'
index=False)

sct = plt.scatter(df comparative['X Real'], df comparative['Y Real'], s=12,
c=df_comparative['Z Error Absolute'], cmap='plasma')

plt.axis('scaled")
plt.colorbar(sct)
plt.title(f'{name_save} Absolute Error'")
plt.savefig(f'{self.point_folder}Plot Error Absolute {method} {name_save}.png'")
if show_plot:

plt.show()
plt.close()

sct = plt.scatter(df_comparative['X Real'], df_comparative['Y Real'], s=12,
c=df_comparative['Z Error Relative'], cmap='plasma')
plt.axis('scaled")

S.

’

65

col _bar = plt.colorbar (sct)
col_bar.ax.get_yaxis().labelpad = 15
col bar.ax.set_ylabel(' % ', rotation=270)
plt.title(f'{name save} Relative Error'")
plt.savefig(f'{self.point folder}Plot Error Relative {method} {name save}.png')
if show _plot:
plt.show()
plt.close()

if method == 'MSE':
'"Yl/n % osum((y - y')**2) 1!
e abs x =0
e abs y =0
e abs z =0
e rel x =0
e rel y=0
e rel z =0

for i in tqgdm(range (0, len(df comparative))):
print (df comparative.X Dist[i], df_ comparative.Y Dist[i], df_ comparative.Z_ Dist[i]
e _abs_x += df comparative.X Error Absolute[i] ** 2
e _abs_y += df comparative.Y Error Absolute[i] ** 2
e _abs_z += df comparative.Z Error Absolute[i] ** 2

e rel x += df comparative.X Error Relative[i] ** 2
e rel y += df comparative.Y Error Relative[i] ** 2
e rel z += df comparative.Z Error Relative[i] ** 2

return ((e abs x / len(df comparative)), (e abs y / len(df comparative)), (e abs z /
len(df comparative))),\
((e_ rel x / len(df comparative)), (e rel y / len(df comparative)),
(e rel z / len(df comparative))), df comparative

if method == 'RMSE':
''Yosgrt(l/n * osum((y - y')**2)) ''!
e abs x =0
e abs y =0

e abs z =0
e rel x =0
e rel y=0
e rel z =0

for i in tqgdm(range (0, len(df comparative))):
print (df comparative.X Dist[i], df comparative.Y Dist[i], df comparative.Z Dist[i]
e _abs_x += df comparative.X Error Absolute[i] ** 2
e _abs_y += df comparative.Y Error Absolute[i] ** 2
e _abs_z += df comparative.Z Error Absolute[i] ** 2

e rel _x += df comparative.X Error Relative[i] ** 2
e rel y += df comparative.Y Error Relative[i] ** 2
e rel z += df comparative.Z Error Relative[i] ** 2

return ((math.sqrt(e abs x / len(df comparative))), (math.sqgrt(e abs y /
len (df comparative))),
(math.sqgrt(e abs z / len(df comparative)))), \
((math.sqgrt(e rel x / len(df comparative))), (math.sqgrt(e rel y /
len(df comparative))),
(math.sqgrt(e rel z / len(df comparative)))), df comparative

if name == " main ":

point folder = f'./Points/Subset NAME OF DATASET/'
if not os.path.exists(point_folder):

os.mkdir (point_folder)
else:

pass

point folder dataset = f'./Points/'
if not os.path.exists(point_ folder dataset):
os.mkdir (point_folder dataset)

else:
pass
FILE_NAME = 'NAME OF DATASET'
RES_FACT = 1
SCALE_FACT = 1
list_beta = [0.10, 0.25, 0.50, 0.75, 1.00, 2.50, 5.00, 10.0, 25.0, 50.0, 75.0]
ERROR_METHOD = 'RMSE'
KERNEL_FUNC = 'multi_sgrt'

DO_INTERPOLATE = True
CALCULATE_ERROR = True
SHOW_PLOTS = False

df = pd.read_csv(f'{point_folder_ dataset}{FILE_NAME}.csv', sep=';")
rprint (df)

66

plt.scatter(df['X"],

df['Y'], c=df['Z'], cmap='plasma')

plt.title('Input Data NAME OF DATASET')

plt.ylabel ('Latitude')

plt.xlabel ('Longitude")

col bar = plt.colorbar()

col bar.ax.set ylabel(' Meters ")

plt.axis('scaled")

plt.savefig(f'{point folder}Plot Input Data.png')

if SHOW PLOTS:
plt.show()

plt.close()

num _of poin
df_subset =

ts

int(len(df) / 1.10)
df.sample (n=num_of points, random_state=l)
df_drop = pd.DataFrame (df.drop(df_subset.index).values, columns=['X', 'Y',6 'Z'])

fit RBI = RBI(df_subset, df drop, resolution_ factor=RES_FACT, reduction_scale=SCALE_FACT)

ddff = fit RBI.execute_method (beta=BETA,

if DO_INTERPOLATE:

dfs = [
rprint (

1

v

for BETA in list beta:
rprint (f'Number of Subset points are {len(df subset)}, '
f'and the number of Validation points are {len(df drop)}')

rprint ()

rprint (' ----- Variables ----- ")

rprint ('File Name: ', FILE NAME)

rprint ('Resolution Factor: ', RES_FACT)

rprint ('Factor Scale: ', SCALE_FACT)

rprint ('Constant Beta: ', BETA)

df = fit RBI.execute method(beta=BETA, kernel function=KERNEL FUNC,

dfs.append (df)

rprint (dfs)

if CALCULATE_ ERROR:

rprint(
dic_err

v

ors

={

"RBF Beta":

}

{}

for BETA in list beta:
rprint('Calculating Errors of Beta', BETA)

ddf

plt.
plt.
plt.
plt.

col

f =

file name=FILE_NAME)

********************** Execute Method B ittt |

fit RBI.load last method(FILE_NAME, beta=BETA)

_bar = plt.colorbar()

col bar.ax.set _ylabel(' Meters ")
plt.axis('scaled")
plt.savefig(f'{point folder}Plot Output Data {NAME OF DATASET} Beta {BETA}.png')
if SHOW PLOTS:
plt.show()
plt.close()

scatter(ddff['x"'], ddff['Y'], c=ddff['Z'], cmap='plasma')
title (f'Output Data NAME OF DATASET Beta {BETA} D)

ylabel ('Latitude')
xlabel ('Longitude')

abs_error, rel_error, df _error = fit RBI.calculate_error (method=ERROR_METHOD,
name_save=f'RBF Beta {BETA}'")
print (f'Error Absolut XYZ {ERROR_METHOD} RBF Beta

abs_error[1],

rel_error[l],

abs_error([2])
print (f'Error Relatiu XYZ {ERROR_METHOD} RBF Beta

rel error[2])

vec_norm_real = np.linalg.norm(df error['Z Real'])
vec_norm_interpolate = np.linalg.norm(df error['Z Interp'])

print('La Norma del Vector Z_Real:

print('La Norma del Vector Z Interp:

print('Diferencia de Normas Real - Interp:
vec_norm_interpolate), 4))

print (' (Norma Real - Norma Interp)/(Norma Real):

dic

'
’

i

’

’

{BETA} : ', abs_error[0],

{BETA} : ', rel_error[0],

round (vec_norm_real, 4))
round (vec_norm_interpolate, 4))
round ((vec_norm_real -

round(((vec_norm_real - vec_norm_interpolate)/vec_norm_real), 4))
={
"Absolute Error": {
"X": np.round(abs_error[0], 7),
"Y": np.round(abs_error[1l], 7),
"7": np.round(abs_error[2], 7),

I

file name=FILE NAME)

67

"Relative Error": {
"X": np.round(rel_error[0], 7),
"Y": np.round(rel error[l], 7),
"7z": np.round(rel error[2], 7)

Y,
"Norma Real": np.round(vec norm real, 7),
"Norma Interp": np.round(vec norm interpolate, 7),
" (Norma Real) - (Interp)": np.round((vec norm real - vec norm interpolate), 7),
" (Norma Real - Norma Interp)/ (Norma Real)": np.round(
((vec_norm real - vec norm interpolate) / vec norm real), 7),
"Norma (Vector Reals - Vector Interp)": np.round(

(np.linalg.norm((df error['Z Real'] - df error['Z Interp']l))), 7)
}

dic_to_print = {
"Absolute Error": np.round(abs_error[2], 7),
"Relative Error": np.round(rel_error[2], 7),
"Norma (Vector Reals - Vector Interp)": np.round(
(np.linalg.norm((df_error['Z Real'] - df error['Z Interp']l))), 7)
}

rprint (dic)
dic_errors["RBF Beta"][BETA] = dic_to_print
rprint(dic_errors)

plt_z = ddff.pivot_ table(index='X', columns='Y', values='Z").T.values
X _unique = np.sort(ddff.X.unique())

Y unique = np.sort(ddff.Y.unique())

plt x, plt y = np.meshgrid(X unique, Y unique)

fig = plt.figure()
ax = fig.add subplot(111)
ct = plt.contourf(plt x, plt y, plt z, cmap='plasma')
cs = plt.contour(plt x, plt y, plt z, levels=[0])
ax.clabel (cs, fontsize=8)
plt.axis('scaled")
plt.colorbar(ct)
plt.title(£'RBF Beta {BETA} Simulate')
plt.savefig(f'{point folder}Plot RBF Beta {BETA}.png')
if SHOW_PLOTS:

plt.show()
plt.close()

fig = plt.figure()
ax = fig.add_subplot(111)
ct = plt.contourf(plt x, plt y, plt_z, cmap='plasma')
cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])
ax.clabel (cs, fontsize=8)
plt.scatter(df_drop['X'], df _drop['Y'], s=12, c='red")
plt.axis('scaled")
plt.colorbar(ct)
plt.title(f'RBF Beta {BETA} Simulate vs Validate')
plt.savefig(f'{point folder}Plot RBF Beta {BETA} simulate vs validate.png')
if SHOW PLOTS:

plt.show()
plt.close()

Fig SubPlot Errors

fig, (axl, ax2) = plt.subplots(l, 2, figsize=(cm to_inch(40), cm to_inch(20)))

ct = axl.contour(plt x, plt y, plt z, colors='k')

sct = axl.scatter(df error['X Real'], df error['Y Real'], s=12,
c=df error['Z Error Absolute'], cmap='plasma') # 'jet') # 'Y1OrRd'

axl.clabel(ct, fontsize=8)

axl.title.set_text('Absolute Error')

axl.axis('scaled")

dividerl = make_axes_locatable (axl)

caxl = dividerl.append_axes("right", size="5%", pad=0.1)

col_bar = plt.colorbar(sct, ax=axl, cax=caxl) # shrink=0.8)

col _bar.ax.get_yaxis().labelpad = 15

col bar.ax.set_ylabel (' meters ")

ct = ax2.contour(plt_x, plt y, plt z, colors='k'")

sct = ax2.scatter(df_error['X Real'], df error['Y Real'], s=12,
c=df_error['Z Error Relative'], cmap='plasma') # 'jet') # 'Y1OrrRd'

ax2.clabel (ct, fontsize=8)

ax2.title.set_text('Relative Error')

ax2.axis('scaled")

divider2 = make_axes_locatable (ax2)

cax2 = divider2.append_axes("right", size="5%", pad=0.1)

col_bar = plt.colorbar(sct, ax=ax2, cax=cax2) # shrink=0.8)

col_bar.ax.get_yaxis().labelpad = 15

col_bar.ax.set_ylabel (' % ', rotation=270)

fig.suptitle(f'Errors Distribution of RBF Beta = {BETA}', fontsize=16)

plt.savefig(f'{point_folder}Plot Errors Distribution RBF Beta {BETA}.png'")

if SHOW PLOTS:

plt.show()
plt.close()

fig = plt.figure()

ax = fig.add_subplot (111, projection='3d")

X, Y, Z = axes3d.get_test_data(0.05)

ct3d = ax.contour (plt x, plt y, plt z, levels=[0])

ax.clabel (ct3d, fontsize=9, inline=1)

ax.scatter(df error['X Real'], df error['Y Real']l, df error['Z Interp'l],
label="'Interpolate Values')

ax.scatter(df error['X Real'], df error['Y Real'], df error['Z Real'l],
label="'Real Values')

plt.legend(loc="best")

plt.title(f'3D Compare Real - Interpolate RBF Beta = {BETA}')

plt.savefig(f'{point folder}Plot Errors 3D Compare RBF Beta {BETA}.png')

if SHOW PLOTS:

plt.show()
plt.close()

rprint (dic_errors)

69

9.2.3 Kriging_multiprocessing.py

import pandas as pd
import matplotlib.pyplot as plt

from mpl toolkits.axes_gridl import make_ axes_locatable

from mpl_ toolkits.mplot3d import axes3d
from rich import print as rprint

import numpy as np

import skgstat as skg

import os

from tgdm.auto import tgdm

import math

def cm_to_inch(value):
return value/2.54

plt.rcParams["figure.figsize"] = [cm to_inch(40), cm to inch(20)]

class Kriging:

point_folder = f'./Points/Subset NAME OF DATASET/'

if not os.path.exists(point_folder):
os.mkdir (point_folder)

else:
pass

def _ init_ (self, data_ frame, df validation, resolution_ factor=50, reduction_scale=l):

self.points = data_frame

self.reduction_scale = reduction_,

scale

self.df validation = df validation

self.num points = len(self.points)
self.resolution factor = resolution factor

self.df validation.to csv(f'{self.point folder}df validation {self.num points} points.csv',

index=False,
self.points.to _csv(f'{self.point folder}df points {self.num points} points.csv',
header=False)

index=False,

header=False)

def

self.V_df = skg.Variogram(self.points[['X",

self.points.Z.values, maxlag='median',

semivariogram plot(self, show_plot=True):

'vy']].values,

normalize=False)

fig, (ax_1, ax_2, ax_3) = plt.subplots(l, 3, figsize=(15, 5), sharey=True, sharex=True)

x = np.linspace (0, self.V_df.maxlag, 100)

manual lags = (6, 12, 18)
plot each variogram

self.v_df.bin_func = 'even'
self.vV_df.n_lags = 10

ax_1l.plot(self.V_df.bins, self.V_df.experimental, '.b'")

ax_l.grid(which='major', axis='x'
ax_l.set_title('10 lags')

self.vV_df.n lags = 20

)

ax_2.plot(self.V_df.bins, self.V_df.experimental, '.b'")

ax_2.grid(which='major', axis='x'
ax_2.set_title('20 lags')

)

self.vV_df.bin func = 'scott'
ax_3.set_xlabel('Lag (-)')
ax_3.plot(self.V_df.bins, self.V_df.experimental, '.b'")

ax_3.grid(which='major', axis='x'
ax 3.set_title('Scott rule lags')

plt.tight layout()

)

plt.savefig(f'{self.point folder}Plot Kriging SemiVariogramas 1.png'")

if show_plot:
plt.show()
plt.close()

def semivariogram plot_ errors(self, show_plot=True):

self.V_df.bin_func = 'scott'

fig, _; = plt.subplots(2, 3, sharex=False, sharey=False)

axes = _a.flatten()

for i, model in enumerate (('spherical',

'cubic')):
self.V_df.model = model

'exponential', 'gaussian', 'matern',6 'stable',

self.V_df.plot (axes=axes[i], hist=False, show=False, grid=False)

axes[i] .set_title('Model: %s;

RMSE:

%.2f" % (model, self.V_df.rmse))

axes[i].set_ylim(0, max(self.V_df.experimental))
plt.savefig(f'{self.point_folder}Plot Kriging SemiVariogramas.png')

if show_plot:
plt.show()

70

plt.close()

def interpolate df(self, V,
self.points['X'] = self.

self.points['Y'] = self.

self.df validation['X']
self.df validation['Y']

x min, x max = int(np.ro

ax, df):
points['X'] * self.reduction_scale
points['Y'] * self.reduction_scale

= self.df validation['X'] * self.reduction_scale
= self.df validation['Y'] * self.reduction_scale

und (min(df['X"']))), int(np.round(max(df['X']
1))

)))
)

def

def

y min, y max = int(np.round (min(df['Y’ , int(np.round (max(df['Y']

num_resolution = ((x_max - x_min) * self.resolution_factor)
x = np.linspace(x _min, x max, num=int(num resolution))
y = np.linspace(y_min, y max, num=int(num_ resolution))

for a in range(0, len(self.df validation['X'])):
x = np.append(x, self.df validation['X'][al)
y = np.append(y, self.df validation['Y'][a])

self.points['X'] =
self.points['Y'] =

self.points['X'] / self.reduction_scale
self.points['Y'] / self.reduction_scale

self.df validation['X'] = self.df validation['X'"] / self.reduction_scale
self.df validation['Y'] = self.df validation['VY'] / self.reduction_scale

x = x / self.reduction scale

y =y / self.reduction scale

rprint (f'Min-Max X: {round (min(x), 2)} - {round(max(x),
rprint (f'Min-Max Y: {round(min(y), 2)} - {round(max(y),
rprint(f'Size X: {x.size} - Size Y: {y.size}')

4) 1)
4) 1)

xXx, yy = np.meshgrid(x, y)

zz = np.empty (xx.shape)

zz[:] = np.nan

ok = skg.OrdinaryKriging(V, min points=3, max points=15, mode='exact')

ZZ ok.transform(xx.flatten(),

art = ax.matshow(zz, origin='lower', cmap='plasma',

ax.set_title('%s model' % V.model._ name_)
plt.colorbar(art, ax=ax)
plt.show ()

return xx, yy, zz

execute _method(self):
self.fields = []

fig, _a = plt.subplots(2, 3,
axes = _a.flatten()

figsize=(12, 10), sharex=True,

self.df fields = pd.DataFrame (
{'spherical': self.fields[0].flatten(),
'gaussian': self.fields[2].flatten(),
"stable': self.fields[4].flatten(), 'cubic':

'exponential':
'matern’':
rprint (self.df fields)

self.df fields.to_csv(f'{self.point_ folder}df fields {self.
index=True, header=True)

return self.df fields
save method(self, name):

for i, model in enumerate(('spherical', 'exponential',

'cubic')):

zz = self.fields[i]
list_p = [1]
for a in range(0, zz.shape[0]):
for b in range(0, zz.shape[l]):
P = [self.xx[a, b], self.yyla, b],
list_p.append(P)
df_save = pd.DataFrame (list_p)
df_save.columns = ['X', 'Y',6 'Z2']

zz[a,

bl]

vmin=V.values.min (),

'gaussian',

yy.flatten()) .reshape (xx.shape)

sharey=True)

'gaussian', 'matern',

for i, model in tgdm(enumerate(('spherical', 'exponential',
'cubic'))):
self.V_df.model = model
self.xx, self.yy, zz = self.interpolate df(self.V _df, axes[i], self.points)
self.fields.append(zz)
plt.show()

self.fields[1l].flatten(),

self.fields[3].flatten(),
self.fields[5].flatten()}) .describe()

num_points} points.csv',

'matern', 'stable',

'stable’',

vmax=V.values.max())

df_save.to_csv(f'{self.point_folder}kriging {model} {name} {self.num_points} points.csv',

index=False, header=False)

71

def load_last_method(self, model, name):

df load =
pd.read csv(f'{self.point folder}kriging {model} {name} {self.num points} points.csv', header=None)
df load.columns = ['X', 'Y', 'Z'"]

return df load
def calculate error(self, df model, name_save, method='MSE', show_plot=False):

def find nearest(df predict, value x, value y, value z, min z validate):
global x, y
df predict x array = df predict.X.to numpy()
df predict_y_ array = df predict.Y.to_numpy()

idx_x = (min(np.abs(df predict_x_ array - value_x)))
idx_y = (min(np.abs(df predict_y array - value_y)))

for i in df predict_x array:
if np.abs(i - value_x) == idx_x:

X =1

for i in df predict_y array:

if np.abs(i - value_y) == idx_y:
y =1
df aprox = df predict[(df predict['X'] == x) & (df predict['Y'] == y)]

array aprox = df aprox.to_ numpy ()

escal z = abs(min z validate)*1.2

val z escal = (value z + escal z)

int_z escal = (array aprox[0][2] + escal z)

e a z escal = abs(val z escal - int _z escal)

e r z escal = (e a z escal/abs(val z escal))*100
1st = [value x, value y, value z,

array aprox[0][0], array aprox[0][1], array aprox[O0][2],
abs (value x - array aprox[0][0]), abs(value y - array aprox[0][1]), e a z escal,
((abs(value_x - array_aprox[O][O])/abs(value_x))*lOO),
((abs(value_y - array_aprox[O][1])/abs(value_y))*lOO),
e r z escal,
[value_z, array_aprox[0][2], (abs(value_z - array aprox[0][2])),
((abs (value_z - array_aprox[O][2])/abs(value_z))*lOO)]]
return lst
comparative = []
for i in tqgdm(range (0, len(self.df validation.values))):
comparative.append(find nearest (df_model, self.df validation.X[i],
self.df validation.Y[i],
self.df validation.Z[i],
min_z validate=min(self.df validation.Z)))

df comparative = pd.DataFrame (comparative,
columns=['X Real', 'Y Real', 'Z Real',

'X_ Interp', 'Y Interp', 'Z Interp',

'X _Error_Absolute', 'Y Error Absolute',
'Z_Error_Absolute',

'X _Error Relative', 'Y Error Relative',
'Z Error Relative',

'List Real 7Zs'])

df comparative.to csv(f'{self.point folder}df comparative {name save} {self.num points} points.csv',
index=False)

sct = plt.scatter(df comparative['X Real'], df_ comparative['Y Real'], s=12,
c=df_comparative['Z Error Absolute'], cmap='plasma')

plt.axis('scaled")
col _bar = plt.colorbar (sct)
plt.title(f'{name_save} Absolute Error'")
plt.savefig(f'{self.point folder}Plot Error Absolute {method} {name_save}.png')
if show_plot:

plt.show()
plt.close()

sct = plt.scatter(df comparative['X Real'], df comparative['Y Real'], s=12,
c=df_ comparative['Z Error Relative'], cmap='plasma')

plt.axis('scaled")
col_bar = plt.colorbar (sct)
col_bar.ax.get_yaxis().labelpad = 15
col_bar.ax.set_ylabel (' % ', rotation=270)
plt.title(f'{name_save} Relative Error'")
plt.savefig(f'{self.point_folder}Plot Error Relative {method} {name_save}.png'")
if show_plot:

plt.show()
plt.close()

if method == 'MSE':
U 1/n % osum((y - y')*%2) 0t

72

e _abs_ x =0
e_abs_y
e abs z =

(]
o o

e rel x =0
e rel y 0
e rel z 0

for i in tqgdm(range (0, len(df comparative))):
print (df comparative.X Dist[i], df comparative.Y Dist[i], df comparative.Z Dist[i])
e abs_x += df comparative.X Error Absolute[i] ** 2
e abs_y += df comparative.Y Error Absolute[i] ** 2
e abs_z += df comparative.Z Error Absolute[i] ** 2

N

e rel x += df comparative.X Error Relative[i] **
e rel y += df comparative.Y Error Relative[i] ** 2
e rel z += df comparative.Z Error Relative[i] ** 2

return ((e_abs_x / len(df_ comparative)), (e_abs_y / len(df_comparative)), (e_abs_z /
len(df_comparative))), \
((e_rel x / len(df_comparative)), (e_rel y / len(df_ comparative)),
(e_rel z / len(df_ comparative))), df_ comparative

if method == 'RMSE':
''Yosgrt(l/n * sum((y - y')**2)) '"!
e abs x =0
e abs y =0
e abs z =0

e rel x =0
e rel y
e rel z =0

]
o

for i in tgdm(range (0, len(df comparative))):
print (df comparative.X Dist[i], df comparative.Y Dist[i], df comparative.Z Dist[i]
e abs x += df comparative.X Error Absolute[i] ** 2
e abs_y += df comparative.Y Error Absolute[i] ** 2
e abs _z += df comparative.Z Error Absolute[i] ** 2

e rel x += df comparative.X Error Relative[i] ** 2
e rel y += df comparative.Y Error Relative[i] ** 2
e rel z += df comparative.Z Error Relative[i] ** 2

return ((math.sqgrt(e_abs_x / len(df comparative))), (math.sqgrt(e_abs_y /
len(df_comparative))),
(math.sqgrt (e_abs_z / len(df comparative)))), \
((math.sqrt(e_rel x / len(df comparative))), (math.sgrt(e_rel_ y /
len(df_comparative))),
(math.sgrt(e_rel_z / len(df_ comparative)))), \
df comparative

if name == " main ":
point_folder = f'./Points/Subset NAME OF DATASET/'
if not os.path.exists(point folder):
os.mkdir (point folder)
else:
pass

point folder dataset = f'./Points/'

if not os.path.exists(point folder dataset):
os.mkdir (point folder dataset)

else:
pass

FILE_NAME = 'NAME OF DATASET'
RES_FACT = 1

SCALE_FACT = 1

ERROR_METHOD = 'RMSE'
DO_INTERPOLATE = True
CALCULATE_ERROR = True
SHOW_PLOTS = False

df = pd.read_csv(f'{point folder dataset}{FILE NAME}.csv', sep=';")
print(len(df))

plt.scatter(df['X"'], df['Y'], c=df['Z2'], cmap='plasma')
plt.title('Input Data NAME OF DATASET')
plt.ylabel('Latitude’')
plt.xlabel('Longitude')
col_bar = plt.colorbar()
col_bar.ax.set_ylabel (' Meters ")
plt.axis('scaled")
plt.savefig(f'{point_folder}Plot Input Data.png')
if SHOW_PLOTS:

plt.show()
plt.close()

73

num_of points = int(len(df) / 1.10)
df subset = df.sample(n=num of points, random state=l)
df drop = pd.DataFrame (df.drop(df subset.index).values, columns=['X', 'Y',6 'Z'])

krig fit = Kriging(df subset, df drop, resolution factor=RES FACT, reduction scale=SCALE FACT)
krig fit.semivariogram plot()
krig fit.semivariogram plot errors()

if DO_INTERPOLATE:
dfs = []
rprint (' ——-------mmmm Execute Method -------------------——- ")

rprint (f'Number of Subset points are {len(df subset)}, '
f'and the number of Validation points are {len(df_drop)}"')

rprint (' ----- Variables - ----- D)

rprint ('File Name: ', FILE_NAME)
rprint ('Resolution Factor: ', RES_FACT)
rprint ('Factor Scale: ', SCALE_FACT)

dfs = krig_fit.execute_method()
krig fit.save_method (FILE_NAME)

if CALCULATE_ERROR:

rprint (' ——-----mmmmm e Calculate Errors =——-—-——=—————=———————————— ")
dic_errors = {
"Kriging Method": {}
}
for i, CONCRETE MODEL in enumerate(('spherical', 'exponential', 'gaussian',6 'matern',
'stable', 'cubic')):

print (i, CONCRETE MODEL.capitalize())
rprint (f'Open {CONCRETE MODEL.capitalize()} Model')
ddff = krig fit.load last method (CONCRETE MODEL, FILE NAME)

plt.scatter(ddff['x'], ddff['Y'], c=ddff['Z'], cmap='plasma')
plt.title(f'Output Data NAME OF DATASET Kriging {CONCRETE MODEL.capitalize()}')
plt.ylabel ('Latitude’')

plt.xlabel('Longitude")

col bar = plt.colorbar()

col bar.ax.set_ylabel (' Meters ")

plt.axis('scaled")

plt.savefig(f'{point folder}Plot Output Data {NAME OF DATASET} Kriging {CONCRETE_MODEL.capitalize()}.
png')
if SHOW_PLOTS:
plt.show()
plt.close()

abs_error, rel_error, df _error = krig fit.calculate_error(ddff, method=ERROR_METHOD,

name_save=f'Kriging {CONCRETE MODEL.capitalize()}")

print (f'Error Absolut XYZ {ERROR METHOD} Kriging {CONCRETE MODEL.capitalize()}: ',
abs_error[0], abs error[l], abs error[2])
print(f'Error Relatiu XYZ {ERROR METHOD} Kriging {CONCRETE MODEL.capitalize()}: ',

rel error[0], rel error[l], rel error[2])

vec norm real = np.linalg.norm(df error['Z Real'])
vec norm interpolate = np.linalg.norm(df error['Z Interp'])

print('La Norma del Vector Z Real: ', round(vec norm real, 4))
print('La Norma del Vector Z Interp: ', round(vec_norm interpolate, 4))
print('Diferencia de Normas Real - Interp: ', round((vec_norm_real -
vec_norm_interpolate), 4))
print (' (Norma Real - Norma Interp)/ (Norma Real): ',
round(((vec_norm_real - vec_norm_interpolate) / vec_norm_real), 4))
print('La Norma (Vector Z Reals - Vector Z Interp: ',

round((np.linalg.norm((df_error['Z Real']l - df_error['Z Interp'l))), 4))

dic = {

"Absolute Error": {
"X": np.round(abs_error[0], 7),
"Y": np.round(abs_error[1], 7),
"7z": np.round(abs_error[2], 7),

Y,

"Relative Error": {
"X": np.round(rel_error[0], 7),
"Y": np.round(rel_error[1l], 7),
"7": np.round(rel_error[2], 7)

I

"Norma Real": np.round(vec_norm_real, 7),

"Norma Interp": np.round(vec_norm_interpolate, 7),

"(Norma Real) - (Interp)": np.round((vec_norm _real - vec_norm_interpolate), 7),

" (Norma Real - Norma Interp)/(Norma Real)": np.round(((vec_norm real -
vec_norm_interpolate) / vec_norm_real), 7),

"Norma (Vector Reals - Vector Interp)": np.round((np.linalg.norm((df_error['Z Real']l -

df_error['Z Interp'l))), 7)

74

}

dic_to_print = {
"Absolute Error": np.round(abs_error[2], 7),
"Relative Error": np.round(rel error[2], 7),
"Norma (Vector Reals - Vector Interp)": np.round(
(np.linalg.norm((df error['Z Real'] - df error['Z Interp']l))), 7)
}

rprint(dic)
dic_errors['Kriging Method'] [CONCRETE MODEL.capitalize()] = dic_ to_print

plt z = ddff.pivot table(index='X', columns='Y', values='Z").T.values
X unique = np.sort(ddff.X.unique())

Y unique = np.sort(ddff.Y.unique())

plt_x, plt_y = np.meshgrid(X_unique, Y_unique)

fig = plt.figure()
ax fig.add subplot (111)
ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')
cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])
ax.clabel (cs, fontsize=8)
plt.axis('scaled")
plt.colorbar(ct)
plt.title(f'Kriging {CONCRETE_MODEL.capitalize()} Simulate')
plt.savefig(f'{point_ folder}Plot Kriging {CONCRETE_MODEL.capitalize()}.png")
if SHOW PLOTS:
plt.show()
plt.close()

fig = plt.figure()

ax = fig.add subplot(111)

ct = plt.contourf(plt x, plt y, plt z, cmap='plasma')

cs = plt.contour(plt x, plt y, plt z, levels=[0])

ax.clabel (cs, fontsize=8)

plt.scatter(df drop['X'], df drop['Y'], s=12, c='red')

plt.axis('scaled")

plt.colorbar(ct)

plt.title(f'Kriging {CONCRETE MODEL.capitalize()}: Simulate vs Validate')

plt.savefig(f'{point_ folder}Plot Kriging {CONCRETE MODEL.capitalize()} simulate vs validate.png")
if SHOW_PLOTS:
plt.show()
plt.close()

Fig SubPlot Errors

fig, (axl, ax2) = plt.subplots(l, 2)

ct = axl.contour(plt_x, plt_y, plt_z, colors='k'")

sct = axl.scatter(df_error['X Real'], df error['Y Real'], s=12,
c=df_error['Z Error Absolute'], cmap='plasma')

axl.clabel (ct, fontsize=8)

axl.title.set text('Absolute Error')

axl.axis('scaled")

dividerl = make axes locatable(axl)

caxl = dividerl.append axes("right", size="5%", pad=0.1)

col bar = plt.colorbar(sct, ax=axl, cax=caxl) # shrink=0.8

col bar.ax.get yaxis().labelpad = 15

col bar.ax.set _ylabel(' meters ")

ct = ax2.contour(plt x, plt y, plt z, colors='k')

sct = ax2.scatter(df error['X Real'], df error['Y Real'], s=12,
c=df error['Z Error Relative'], cmap='plasma')

ax2.clabel (ct, fontsize=8)

ax2.title.set text('Relative Error')

ax2.axis('scaled')

divider2 = make_axes_locatable (ax2)

cax2 = divider2.append_axes("right", size="5%", pad=0.1)

col _bar = plt.colorbar(sct, ax=ax2, cax=cax2) # shrink=0.8)

col _bar.ax.get_yaxis().labelpad = 15

col _bar.ax.set_ylabel(' % ', rotation=270)

fig.suptitle(f'Errors Distribution of Kriging {CONCRETE_MODEL.capitalize()}',
fontsize=16)

plt.savefig(f'{point_ folder}Plot Errors Distribution Kriging {CONCRETE_MODEL.capitalize()}.png")
if SHOW_PLOTS:
plt.show()
plt.close()

fig = plt.figure()

ax = fig.add_subplot (111, projection='3d")

X, Y, Z = axes3d.get_test_data(0.05)

ct3d = ax.contour(plt_x, plt_y, plt_z, levels=[0])

ax.clabel (ct3d, fontsize=9, inline=l)

ax.scatter(df_error['X Real']l, df_error['Y Real'l, df_error['Z Interp'l,
label='Interpolate Values')

ax.scatter(df_error['X Real']l, df error['Y Real'l, df_error['Z Real'l],
label="'Real Values')

plt.legend(loc="best")

plt.title(f'3D Compare Real - Interpolate Kriging {CONCRETE_MODEL.capitalize()}")

plt.

savefig (f'{point_folder}Plot Errors 3D Compare Kriging {CONCRETE_MODEL.capitalize()}.png')
if SHOW PLOTS:
plt.show()
plt.close()

rprint (dic_errors)

76

9.2.4

STL_Delaunay.py

import pandas as pd

import matplotlib.pyplot as plt
from rich import print as rprint
import numpy as np

import pyvista as pv

from tgdm.auto import tgdm
import os

import time

class Structure3D:
point folder = './Points/'
if not os.path.exists(point folder):

os.mkdir (point folder)

else:

def

def

def

def

pass

_ init (self, data_ frame):
self.df = data_frame

save_method(self, name, method):
self.df.to_csv(f'{self.point_folder}{method} DataFrame {name}.csv', index=False)

load last method(self, name, method):

self.df = pd.read csv(f'{self.point folder}{method} DataFrame {name}.csv')
self.df.columns = ['X', 'Y', 'Z']

return self.df

blocs_to_print(self):
t = time.strftime ("5Y%msd-SH3MES")

self.df['X"'] = self.df['X'] - min(self.df['X'])
self.df['Y'] = self.df['Y'] - min(self.df['Y'])
self.df['Z2'] = (self.df['Z'] + abs(min(self.df['Zz']))) / 10

rprint ('Values of X: ', min(self.df['X']), ' - ', max(self.df['X']))
rprint ('Values of Y: ', min(self.df['Y']), ' - ', max(self.df['Y']))
rprint ('Values of Z: ', min(self.df['Z']), ' - ', max(self.df['Z']))

limit_in_x = max(self.df['X']) * 1/2
limit_in_y = max(self.df['Y']) * 1/4

rprint ('Limit inter Bloc in X:', limit_in_ x)
rprint ('Limit inter Bloc in Y:', limit_in_y)

list B 11 = []
list B 12 = []
list B 13 = []
list B 14 = []
list B 21 = []
list B 22 = []
list B 23 = []
list B 24 = []

for data in self.df.values:

x = datal[0]
y = datal[l]
z = datal[2]

if x < limit in x:
if y < limit in y:
list B 1l.append([x, y, zl)

elif limit in y <= y < 2*limit in y:
list B 12.append([x, y, zl)

elif 2*limit _in y <= y < 3*1limit_in y:
list B 13.append([x, vy, z])

elif y >= 3*limit in y:
list B 14.append([x, y, z])

elif x >= limit in x:
if y < limit_in_y:
list B 2l.append([x, vy, z])

elif limit in y <= y < 2 * limit_in y:
list B 22.append([x, vy, z])

elif 2 * limit_in y <= y < 3 * limit_in_y:
list_B 23.append([x, y, z])

elif y >= 3 * limit_in_y:
list_B 24.append([x, y, z])

77

rprint (list_B_11)
df _B_11 = pd.DataFrame(list_B_11)
rprint (df B 11)

df B 1l.columns = ['X', "Y', 'Z'"]

df B 11.to _csv(f'{self.point folder}df B 11 {t}.csv', index=False)
rprint ('Bloc 1 1 X: ', min(df B 11['X']), max(df B 11['X']))
rprint ('Bloc 1 1 Y: ', min(df B 11['Y']), max(df B 11['Y']))
rprint ()

df B 12 = pd.DataFrame(list B 12)

df B 12.columns = ['X', 'Y', 'Z'"]

df B 12.to _csv(f'{self.point folder}df B 12 {t}.csv', index=False)
rprint ('Bloc 1 2 X: ', min(df B 12['X']), max(df B 12['X']))
rprint ('Bloc 1 2 Y: ', min(df B 12['Y']), max(df B 12['Y']))
rprint()

df B 13 = pd.DataFrame(list B 13)

df B 13.columns = ['X', 'Y', 'Z2']

df B _13.to_csv(f'{self.point_folder}df B 13 {t}.csv', index=False)
rprint ('Bloc 1 3 X: ', min(df B 13['X']), max(df_B_13['X']))
rprint('Bloc 1 3 Y: ', min(df B 13['Y']), max(df_B_13['Y']))
rprint()

df B 14 = pd.DataFrame(list_B_14)

df B l4.columns = ['X', 'Y', 'Z2']

df B 14.to_csv(f'{self.point_folder}df B 14 {t}.csv', index=False)
rprint ('Bloc 1 4 X: ', min(df B 14['X']), max(df B 14['X']))
rprint ('Bloc 1 4 Y: ', min(df B 14['Y']), max(df B 14['Y']))
rprint ()

df B 21 = pd.DataFrame(list B 21)

df B 21.columns = ['X', "Y', 'Z'"]

df B 21.to csv(f'{self.point folder}df B 21 {t}.csv', index=False)
rprint ('Bloc 2 1 X: ', min(df B 21['X']), max(df B 21['X']))
rprint ('Bloc 2 1 Y: ', min(df B 21['Y']), max(df B 21['Y']))
rprint ()

df B 22 = pd.DataFrame(list B 22)

df B 22.columns = ['X', 'Y', 'Z'"]

df B 22.to_csv(f'{self.point_folder}df B 22 {t}.csv', index=False)
rprint ('Bloc 2 2 X: ', min(df B 22['X']), max(df_B 22['X']))
rprint ('Bloc 2 2 Y: ', min(df B 22['Y']), max(df_B 22['Y']))
rprint ()

df B 23 = pd.DataFrame(list B 23)

df B 23.columns = ['X', 'Y', 'Z']

df B 23.to_csv(f'{self.point_folder}df B 23 {t}.csv', index=False)
rprint ('Bloc 2 3 X: ', min(df B 23['X']), max(df_B _23['X']))
rprint ('Bloc 2 3 Y: ', min(df B 23['Y']), max(df_B _23['Y']))
rprint ()

df B 24 = pd.DataFrame(list B 24)

df B 24.columns = ['X', 'Y', '7'"]

df B 24.to csv(f'{self.point folder}df B 24 {t}.csv', index=False)
rprint ('Bloc 2 4 X: ', min(df B 24['X']), max(df B 24['X']))
rprint ('Bloc 2 4 Y: ', min(df B 24['Y']), max(df B 24['Y']))
rprint ()

return [df B 11, df B 12, df B 13, df B 14, df B 21, df B 22, df B 23, df B 24], t

def blocs_to_print_2(self):
t = time.strftime ("%Ysmsd-*

]
S

self.df['X'] = self.df['X'] - min(self.df['X'])
self.df['Y'] = self.df['Y'] - min(self.df['Y'])

self.df['2'] = (self.df['Z'] + abs(min(self.df['Z']))) / 10

rprint ('Values of X: ', min(self.df['X"']), ' - ', max(self.df['X']))
rprint ('Values of Y: ', min(self.df['Y"']), ' - ', max(self.df['Y']))
rprint ('Values of Z: ', min(self.df['Z"']), ' - ', max(self.df['Z']))

limit in x = max(self.df['X']) * 1 / 2
limit_in y = max(self.df['Y']) * 1 / 3

rprint ('Limit inter Bloc in X:', limit_in_x)
rprint ('Limit inter Bloc in Y:', limit_in_y)

list B 11
list B 12
list B 13
list B 1
list B 21
list B 22
list B 23 = []

list B 24 = []

[1
[1
[1

s n
I

for data in self.df.values:

x = datal[0]
y = data[l]
z = datal[2]

if x < limit _in x:
if y < limit_in_y:
list B 1l.append([x, y, z])

elif limit in y <= y < 2 * limit in y:
list B 12.append([x, y, z])

elif 2 * limit in y <= y < 3 * limit in y:
list_B 13.append([x, y, z])

elif y >= 3 * limit in y:
list B_l4.append([x, y, z]

elif x >= limit_in_x:
if y < limit_in_y:
list_B 2l.append([x, y, z])

elif limit in y <= y < 2 * limit_in_y:
list B 22.append([x, y, z])

elif 2 * limit in y <= y < 3 * limit in y:
list B 23.append([x, y, zl)

elif y >= 3 * limit in y:
list B 24.append([x, y, z]

rprint (list B 11)
df B 11 = pd.DataFrame(list B 11)
rprint (df B 11)

df B 1l.columns = ['X', "Y', 'Z'"]

df B 11.to csv(f'{self.point folder}df B 11 {t}.csv', index=False)
rprint ('Bloc 1 1 X: ', min(df B 11['X']), max(df B 11['X']))
rprint ('Bloc 1 1 Y: ', min(df B 11['Y']), max(df B 11['Y']))
rprint ()

df B 12 = pd.DataFrame(list B 12)

df B 12.columns = ['X', 'Y', 'Z']

df B _12.to_csv(f'{self.point_folder}df B 12 {t}.csv', index=False)
rprint ('Bloc 1 2 X: ', min(df B 12['X']), max(df_B_12['X']))
rprint('Bloc 1 2 Y: ', min(df B _12['Y']), max(df_B_12['Y']))
rprint ()

df B _13 = pd.DataFrame(list_B_13)

df B _13.columns = ['X', 'Y', 'Z2']

df B _13.to_csv(f'{self.point_folder}df B 13 {t}.csv', index=False)
rprint ('Bloc 1 3 X: ', min(df B 13['X']), max(df B 13['X']))
rprint ('Bloc 1 3 Y: ', min(df B 13['Y']), max(df B 13['Y']))
rprint ()

df B 14 = pd.DataFrame(list B 14)

df B 14.columns = ['X', 'Y',K6 'Z']

df B 14.to csv(f'{self.point folder}df B 14 {t}.csv', index=False)
rprint('Bloc 1 4 X: ', min(df B 14['X']), max(df B 14['X']))

rprint('Bloc 1 4 Y: ', min(df B 14['Y']), max(df B 14['Y'])

rprint()

df B 21 = pd.DataFrame(list B 21)

df B 2l.columns = ['X', 'Y', 'Z2']

df B 21.to_csv(f'{self.point_folder}df B 21 {t}.csv', index=False)
rprint ('Bloc 2 1 X: ', min(df B 21['X']), max(df_B 21['X']))
rprint('Bloc 2 1 Y: ', min(df B 21['Y']), max(df_B 21['Y']))
rprint ()

df B 22 = pd.DataFrame(list_B_ 22)
df B 22.columns = ['X', 'Y', 'Z'"]
df B 22.to_csv(f'{self.point_folder}df B 22 {t}.csv', index=False)

rprint ('Bloc 2 2 X: ', min(df B 22['X']), max(df_B 22['X']))
rprint ('Bloc 2 2 Y: ', min(df B 22['Y']), max(df_B 22['Y']))
rprint ()

df_B_23 = pd.DataFrame(list_B_23)

df_B_23.columns = ['X', 'Y', 'Z']
df_B_23.to_csv(f'{self.point_folder}df B 23 {t}.csv', index=False)
rprint ('Bloc 2 3 X: ', min(df_B_23['X']), max(df_B 23['X']))
rprint ('Bloc 2 3 Y: ', min(df_B_23['Y']), max(df_B 23['Y']))
rprint ()

return [df B 11, df B 12, df B 13, df B 21, df B 22, df B 23], t

def make_stl(self, df _block, mesh name_to_save, alfa_Delaunay 3D=1):
rprint ('Starting to generate a Delaunay STL ...'")
points = df_block.to_numpy ()

cloud = pv.PolyData (points)
cloud.plot ()

volume = cloud.delaunay 2d()

shell = volume.extract geometry()
shell.save (mesh_name_to_save + '.stl')
rprint ("The Delaunay STL it's done")
shell.plot ()

point_folder = './Points/'

if not os.path.exists(point folder):
os.mkdir (point folder)

else:
pass

NAME = 'NAME OF DATASET'

MODEL = 'METHOD'

NUM_POINTS = 'NUM POINTS' + ' points'
STL_TOTAL = True

STL_BLOCS = False

df = pd.read_csv(f'{point_ folder}{MODEL} {NAME} {NUM_POINTS}.csv', header=None)
df.columns = ['X', 'Y', 'Z']

rprint ("File it's open to create a Delaunay STL")
df['z'] = df['2'] / 3000

structure 3d fit = Structure3D(df)
''"'"STL en B s''"!

if STL BLOCS:
blocks, time = structure_3d_fit.blocs_to_print_2()

x =1
for block in tgdm(blocks):
print(x)
rprint (block, type (block)
name = £'{x}"'
structure 3d fit.make stl(block, name, alfa Delaunay 3D=1)
x += 1

''"'STL de tot el Bloc'''

if STL_TOTAL:
structure_ 3d fit.make_ stl(df, f'{point_ folder}{MODEL} {NAME} {NUM POINTS}")
structure 3d fit.from df to_ txt(df, MODEL, NAME, NUM POINTS)

