

Treball realitzat per:

Pol Baños Castelló

Dirigit per:

Alberto García González

Jaume Soler Villanueva

Grau en:

Ciències i Tecnologies del Mar

Barcelona, 29/06/2022

Departament d'Enginyeria Civil i Ambiental (DECA) - Matemàtica

Aplicada i Estadística (MAE)

 T
R

EB
A

LL
 F

IN
A

L
D

E
G

R
A

U

Model per a impressió 3D

de superfícies basades en

Batimetria

1

Agraïments

Aquest treball no hauria estat possible sense el suport incondicional de la meva amiga Carme

Feliu i Cremades a la que vull agrair la seva dedicació i comprensió a qualsevol hora del dia o la

nit. Gràcies, Carme.

A la meva família per aguantar-me, sé que han passat moments difícils al meu costat aquest

últim temps, la vida et posa a prova sempre. L'elaboració d'aquest projecte acompanyat d'una

situació difícil viscuda per un amic m'ha portat a viure moments molt crítics i depriments des de

fa uns mesos, i sempre els he tingut al costat. Gràcies, família.

A tots i totes les companyes de classe i de la colla Cactus que m'han acompanyat durant aquest

llarg viatge. Gràcies, amics i amigues

Al Raúl Gímenez Rodrigo dels serveis TIC UTG Camins - TECH que no m'ha deixat de la ma en cap

moment, oferint-me el seu suport incondicional per poder obtenir les impressions 3D. Gràcies,

Raúl.

Als meus dos tutors Alberto García González i Jaume Soler Villanueva que van acceptar la meva

proposta de projecte i han estat seguint-lo de manera activa i generosa des de l'inici. Gràcies,

Alberto i Jaume.

GRÀCIES SENSE VOSALTRES RES HAGUÉS ESTAT IGUAL.

2

ÍNDEX
RESUM ... 3

1 INTRODUCCIÓ – OBJECTIUS .. 4

2 ESTAT DE L’ART ... 5

3 MÈTODES ... 6

3.1 MÈTODES D’INTERPOLACIÓ .. 6

3.1.1 KRIGING ORDINARI .. 6

3.1.2 INVERSE DISTANCE WEIGTHED INTERPOLATION .. 12

3.1.3 RADIAL BASIS FUNCTION INTERPOLATION ... 13

3.1.4 MÈTODES DE VALIDACIÓ ... 14

3.2 GENERACIÓ DE LA MALLA 3D .. 16

3.2.1 TRIANGULACIÓ DE DELAUNAY .. 16

3.2.2 SOFTWARE MESHMIXER ... 16

3.3 IMPRESSORA 3D .. 21

3.4 WORK FLOW .. 23

4 RESULTATS... 24

4.1 IDW INTERPOLATION RESULTATS ... 25

4.2 RBF INTERPOLATION RESULTATS .. 27

4.3 KRIGING INTERPOLATION RESULTATS .. 28

4.4 RESULTATS I PARÀMETRES PER LA CREACIÓ DEL FITXER STL 30

4.5 IMPRESSIÓ 3D DINS EL SANDBOX ... 32

5 DISCUSSIONS I CONCLUSIONS ... 33

6 LIMITACIONS I FUTUR PRÒXIM ... 34

7 BIBLIOGRAFIA .. 35

8 ÍNDEX DE FIGURES ... 37

9 ANNEX ... 39

9.1 ALTRES RESULTATS .. 39

9.1.1 CANONS SUBMARINS .. 39

9.1.2 VILANOVA I LA GELTRÚ ... 42

9.1.3 CAP DE CREUS ... 46

9.1.4 GIJÓN ... 49

9.2 CODI PYTHON .. 52

9.2.1 IDW_multiprocessing.py ... 52

9.2.2 RBF_multiprocessing.py .. 62

9.2.3 Kriging_multiprocessing.py ... 70

9.2.4 STL_Delaunay.py ... 77

3

RESUM
En la durada de tot el projecte es parlarà del funcionament tècnic de mètodes d'interpolació en

l'àmbit de topografia i batimetria a partir dades no estructurades per generar una malla de nous

punts, la qual finalment la convertirem a un fitxer STL apte per una impressora 3D. Tot el procés

estarà seguint un WorkFlow basat en programari lliure que qualsevol usuari podrà utilitzar.

Els mètodes seleccionats han estat l'Inverse Distance Weighting Interpolation (IDW), el Radial

Basis Function Interpolation (RBF) i Kriging Ordinari. Es faran servir els tres mètodes

d'interpolació per cinc conjunts de dades de diferents zones geogràfiques: la costa de Vilanova

i la Geltrú (Barcelona), el Cap de Creus (Girona), una part de la costa de Gijón (Astúries) i

finalment l'illa de La Palma (Canàries). L'algoritme que s'ha emprat per realitzar les

interpolacions ha estat escrit amb Python, que al costat dels softwares MeshMixer i BCN3S

Stratos, són els softwares lliures que s'han fet servir.

Un cop feta la interpolació encara amb el Python, es generarà el primer STL de la superfície

interpolada, a la qual se li arreglaran tots els desperfectes. Seguidament se li donarà gruix, per

tenir-lo ja llest per imprimir-lo amb una impressora 3D de l'empresa BCN3D.

Finalment, un cop tenim la nostra zona interpolada i impresa en tres dimensions, s'utilitzarà un

SandBox per fer la visualització final del projecte.

Paraules Clau: Interpolació, Batimetria, Inverse Distance Weighting, Radial Basis Function,

Kriging Ordinari, STL, impressora 3D.

ABSTRACT
During the whole project we will explain the technical operation of interpolation methods in the

context of topography and bathymetry from unstructured data to generate a mesh of new

points, which we will finally convert it into an STL file ready for a 3D printer. The whole process

will be following a WorkFlow based on free software that any user will be able to use.

The selected methods have been the Inverse Distance Weighting Interpolation (IDW), the Radial

Basis Function Interpolation (RBF) and Ordinary Kriging. The three interpolation methods will be

used for five data sets from different geographical areas: the coast of Vilanova i la Geltrú

(Barcelona), Cap de Creus (Girona), a part of the coast of Gijón (Asturias) and finally the island

of La Palma (Canary Islands). The algorithm used to perform the interpolations has been written

with Python, which together with the software MeshMixer and BCN3S Stratos, are the free

software used.

Once the interpolation is still done with Python, the first STL of the interpolated surface will be

generated, to which all the defects will be repaired. Then we will give it thickness, to have it

ready to print it with a 3D printer of the company BCN3D.

Finally, once we have our area interpolated and printed in three dimensions, a SandBox will be

used for the final visualization of the project.

Key words: Interpolation, Bathymetry, Inverse Distance Weighting, Radial Basis Function,

Ordinary Kriging, STL, 3D printer.

4

1 INTRODUCCIÓ – OBJECTIUS
Una bona interpolació de dades no estructurades, és a dir, que tenen una distribució irregular i

que no estan en els vèrtex d'una quadricula cartesiana, com les que es treballaran en aquest

projecte, pot tenir moltes utilitats en tots els sectors de simulacions i prediccions climàtiques,

on les dades de batimetria són un dels inputs més importants. El motiu principal de tenir dades

no estructurades és que hi ha zones de molt difícil accés, on no es poden recollir dades, és per

això que realitzem aquestes interpolacions. Per exemple, en el sector de simulacions de models

numèrics, programes com el SWAN i el XBEACH utilitzen una malla batimètrica com a un dels

inputs del model, que simularà i farà prediccions d'onatge i moviment del sediment.

L'objectiu principal d’aquest projecte és dur a terme un WorkFlow de manera que, només llegint

i seguint els passos indicats, l'usuari sigui capaç d'elaborar i passar del seu núvol de punts inicial

a un STL a punt per a imprimir-lo en 3D, mitjançant l’ús de diferents entorns, com el Python, el

MeshMixer i el software d'una impressora 3D.

S'han seleccionat tres mètodes d'interpolació diferents, l'Inverse Distance Weighting

Interpolation (IDW), el Radial Basis Function Interpolation (RBF) i el Kriging Ordinari. Es

realitzaran les interpolacions de diferents zones geogràfiques: la costa de Vilanova i la Geltrú

(Barcelona), el Cap de Creus (Girona), una part de la costa de Gijón (Astúries) i finalment l'illa de

La Palma (Canàries). Un cop realitzada aquesta interpolació feta amb Python seguirem amb

aquest entorn per generar la primera fase: generar un fitxer STL 3D de la superfície interpolada

del STL. Aquest fitxer serà convertit en un fitxer STL apte per a la impressió 3D amb el software

de MeshMixer.

5

2 ESTAT DE L’ART
Avui en dia existeixen molt tipus d’interpolacions en l’àmbit de topografia i batimetria. Tenim

des de mètodes menys complexos a més complexos. Alguns del mètodes més coneguts són

(Serreta Oliván & Playán Jubillar, 1993); l'Inverse Distance Weighting Interpolation (IDW) , el

Radial Basis Function Interpolation (RBF), Polígons de Thisen, la Xarxa de Triangles Irregulars

(TIN), les Sèries de Fourier i Kriging entre d’altres. Donat el temps que es té per a realitzar un

projecte com aquest s’ha optat per seleccionar els tres mètodes següents; el IDW, RBF i Kriging

Ordinari, ja que el primer és el més simple però amb gran eficiència, el segon és una mica més

complex d’utilitzar, ja que computacionalment és més costos, i finalment l’últim que és un dels

millors de tots els mètodes per a la interpolació en batimetria i topografia (Adhikary et al., 2016).

S’ha decidit que la representació gràfica de la interpolació fos per mitjà d’una impressora 3D. La

impressió 3D és actualment una tècnica molt innovadora que permet fer coses extraordinàries,

des de la manufacturació d’una casa de forma econòmica (Plantamura F & Oberti I, 2015; Tobi

et al., 2018) fins a la generació d’òrgans, com un pàncreas o un fetge, utilitzant com a material

cèl·lules (Schubert et al., 2014; Yoo, 2015). Cal dir, però, que no es l’única opció per a realitzar

una impressió com aquesta, també existeix la tècnica de CNC 3D, que consisteix a eliminar

material d’un bloc inicial però, a part que és una tècnica més cara, és molt més difícil accedir a

una d’aquestes màquines que a una impressora 3D.

Per a finalitzar es treballarà amb un SandBox per fer la presentació dels models impresos en 3D.

El SandBox que tenim a la universitat és el resultat final d’un Treball Final de Màster (TFM)

realitzat fa uns anys aquí a l’escola de Camins de l’UPC. El codi original del SandBox i tot el seu

procediment de construcció va ser cedit gratuïtament pel seu desenvolupador, creador i

estudiant en aquell moment de la Univesity of California, Davis Oliver Kreylos (Reed et al., 2016).

6

3 MÈTODES

3.1 MÈTODES D’INTERPOLACIÓ
Les metodologies mostrades a continuació són mètodes d’interpolació que parteixen d’un núvol

de punts amb coordenades (𝑋, 𝑌, 𝑍) per tal de, amb diferents mètodes d’interpolació, podrem

calcular la coordenada 𝑍 punt (𝑋, 𝑌) en una malla diferent.

3.1.1 KRIGING ORDINARI
Kriging és un model d’interpolació molt potent en la geoestadistica i s’utilitza en molts softwares

GIS (SIG - Sistemes d’Informació Geogràfica, o en anglès GIS - Geographical Information System).

Atès que es tracta d’un mètode molt potent computacionalment parlant, és recomanat aplicar-

lo quan tenim una alta qualitat en les dades i volem un resultat molt acurat (Introduction to

Spatial Analysis, n.d.). Existeixen tres mètodes diferents dins del model de Kriging; el Kriging

Ordinari, el Kriging Simple, i el Kriging Universal.

El mètode Kriging és similar al Inverse Distance Weighting interpolation (IDW), ja que ambdós

mètodes d’interpolació expressen la suma ponderada de les dades (ArcGIS, n.d.).

Aquests mètodes utilitzen la SemiVariança per obtenir els valors de la coordenada 𝑍 en els nous

punts d’interès. El problema és estimar l'altura 𝑍̂0 d'un punt (𝑋0, 𝑌0) a partir dels valors observats

𝑍𝑖 de cada punt (𝑋𝑖, 𝑌𝑖),

1 ≤ 𝑖 ≤ 𝑁 𝑁 é𝑠 𝑒𝑙 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑑𝑎𝑑𝑒𝑠

Això es calcula

 𝑍̂0 =∑𝑤𝑖𝑍𝑖

𝑁

𝑖=1

 (1)

on els 𝑤𝑖 són els pesos tal que

 ∑𝑤𝑖

𝑁

𝑖

= 1 (2)

L'estimació Kriging s'obté agafant els 𝑤𝑖 de manera que la variància estimada entre el punt

interpolat 𝑍̂0 i el punt real 𝑍0,

 𝜎𝐸
2 =

1

𝑁
∑(𝑍0 − 𝑍̂0)

2

 (3)

sigui mínima.

A partir de les dades, el primer que es fa per a calcular el SemiVariograma és calcular la relació

de la distància entre parells de punts i la diferència absoluta de les seves coordenades (𝑥, 𝑦), tot

calculat en metres. Obtenint així un gràfic com el de la Fig. 1 on cada punt blau fa referència a

una parella de punts.

7

Fig. 1 Gràfica que relaciona la distància entre parells de punts i la seva diferència absoluta en la coordenada 𝑍.

Seguidament, i a partir del que s’ha calculat en el gràfic anterior, es comença a calcular el

SemiVariograma en funció SemiVariança (Eq. 4). Es divideix l’eix X de la Fig. 1 en subintervals de

longitud ℎ divisions i es calcula la SemiVariança per cada interval d’amplada ℎ. La distància ℎ

que s’acaba d’esmentar és el que més endavant anomenarem 𝑙𝑎𝑔, que serà la distància entre

punts del SemiVariograma. En termes pràctics normalment el que es fa és dividir el

SemiVariograma en un nombre determinat de 𝑙𝑎𝑔𝑠 i després calcular la distància ℎ de separació.

 𝛾(ℎ) =
1

2 𝑁(ℎ)
 ∑(𝑍(𝑖 + ℎ) − 𝑍(𝑖))

2

𝑁(ℎ)

𝑖=1

 (4)

𝑁(ℎ) → 𝑁𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑝𝑢𝑛𝑡𝑠 𝑎𝑝𝑎𝑟𝑒𝑙𝑙𝑎𝑡𝑠 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑠 𝑎 𝑢𝑛𝑎 𝑑𝑖𝑠𝑡à𝑛𝑐𝑖𝑎 ≤ ℎ
𝑍(𝑖) → 𝐸𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑍 𝑑′𝑢𝑛 𝑝𝑢𝑛𝑡
𝑍(𝑖 + ℎ) → 𝐸𝑙 𝑣𝑎𝑙𝑜𝑟 𝑑𝑒 𝑍 𝑑′𝑢𝑛𝑎 𝑎𝑙𝑡𝑟𝑒 𝑝𝑢𝑛𝑡𝑠 𝑎 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑎 ≤ ℎ

A partir del càlcul de la SemiVariança obtenim la gràfica del SemiVariograma Empíric (𝛾(ℎ)) com

podem veure a la Fig. 2.

Fig. 2 SemiVariograma Empíric (Córdoba et al., 2019).

8

El que podem determinar a partir d’aquest SemiVariograma (alguns autors en diuen

autocorrelació espacial quantificada), és que és més probable que els parells de punts que es

trobin més a prop seran més semblants entre ells que no pas els que es troben més llunyans

(ArcGIS, n.d.; Córdoba et al., 2019).

Els paràmetres que defineixen un SemiVariograma Teòric (𝛾(ℎ)) són: el Nugget (𝐶0) és el valor

on el SemiVariograma està més a prop (o quasi talla) de l’eix Y, el Sill Parcial (𝐶), el Sill (𝐶 + 𝐶0)

que és el valor del model és constant i el Rang (𝑅) és la distància que té el model fins que el

valor del SemiVariograma és constant, com es poden veure en la Fig. 3. El terme Sill fa referència

al punt on la variància entre parells de punts deixa d’augmentar i roman constant amb la

distància.

Fig. 3 SemiVariograma teòric de un model Esfèric (Córdoba et al., 2019).

En aquest punt hem de decidir quin dels models que es descriuen a continuació s’ajusta millor

al nostre SemiVariograma. Aquest serà un punt d’inflexió en la resta del procés, ja que l’elecció

del model determinarà la descripció espacial i les futures prediccions que es realitzaran.

Alguns dels models que s’utilitzen per ajustar Kriging Ordinari són: el Model Esfèric, el Model

Exponencial, el Model Circular, el Model Gaussià i el Model Lineal. L’elecció del model serà un

dels factors més importants a tenir en compte en aquest mètode, particularment en els parells

de punts més propers a l’origen del SemiVariograma, ja que cada model està dissenyat per

modelar diferents fenòmens (ArcGIS, n.d.).

Aquí podem veure alguns del models d’ajustament de SemiVariogrames més simples i d’altres

més complexos, la majoria dels quals seran utilitzats a la part pràctica (Gabri, 2018;

GISGeography, 2022; Mälicke, 2021; Montero et al., 2012).

Les següents equacions estan descrites per les mateixes variables que segueixen la

nomenclatura de la Fig. 3, que corresponen a:

𝐶0 → 𝑁𝑢𝑔𝑔𝑒𝑡.

𝐶1 → 𝑆𝑖𝑙𝑙 𝑝𝑎𝑟𝑐𝑖𝑎𝑙.

ℎ → É𝑠 𝑙𝑎 𝑑𝑖𝑠𝑡à𝑛𝑐𝑖𝑎 𝑒𝑛𝑡𝑟𝑒 𝑝𝑢𝑛𝑡 𝑖 𝑒𝑙 0 𝑑𝑒 𝑙′𝑒𝑖𝑥 𝑋 𝑑𝑒𝑙 𝑆𝑒𝑚𝑖𝑣𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚𝑎.
𝑎 → É𝑠 𝑒𝑙 𝑅𝑎𝑛𝑔 𝑑𝑒𝑙 𝑆𝑒𝑚𝑖𝑉𝑎𝑟𝑖𝑜𝑔𝑟𝑚𝑎

9

MODEL LINEAL

El model lineal (Fig. 4) és el més bàsic de tots, ja que la varietat espacial va augmentat linealment

amb la distància. És un model que no té Sill, i és l’usuari qui els ha de posar manualment.

 𝛾(ℎ) = {
𝐶0 + 𝐶1 (

ℎ

𝑎
) 𝑠𝑖 0 ≤ ℎ ≤ 𝑎

𝐶0 + 𝐶1 𝑠𝑖 ℎ > 𝑎
 (3)

Fig. 4 SemiVariograma Teòric ajustat amb un model lineal.

MODEL ESFÈRIC

El model esfèric (Fig. 5) és un dels més utilitzats en modelat del SemiVariogrames, ja que mostra

una disminució progressiva de l’autocorrelació espacial, de la mateixa forma que creix la

SemiVariança però fins a cert punt on aquesta autocorrelació passa a ser zero i on tindrem un

Sill.

 𝛾(ℎ) =

{

0 𝑠𝑖 ℎ = 0

𝐶0 + 𝐶1 (
3

2
(
ℎ

𝑎
) −

1

2
(
ℎ

𝑎
)
3

) 𝑠𝑖 0 < ℎ ≤ 𝑎

𝐶0 + 𝐶1 𝑠𝑖 ℎ > 𝑎

 (5)

Fig. 5 SemiVariograma Teòric ajustat amb un model esfèric.

10

MODEL EXPONENCIAL

En el model exponencial (Fig. 6) veiem com de forma gradual la variabilitat del SemiVariograma

va augmentant en funció de la distància entre parells de punts, de tal forma que a més distància

tindrem una major variabilitat, sense arribar mai a un valor constant (Sill).

 𝛾(ℎ) = {
0 𝑠𝑖 ℎ = 0

𝐶0 + 𝐶1 (1 − 𝑒
(−
3ℎ
𝑎
)
) 𝑠𝑖 ℎ > 0

 (6)

Fig. 6 SemiVariograma Teòric ajustat amb un model exponencial.

MODEL GAUSSIÀ

En el model gaussià (Fig. 7) veiem com variabilitat segueix una distribució de probabilitat normal

o gaussiana. Això és molt útil quan a distàncies curtes tenim uns valors molt semblants, ja que

en distàncies curtes tindrem una baixa variabilitat, i en distàncies altes una alta variabilitat.

 𝛾(ℎ) = {

0 𝑠𝑖 ℎ = 0

𝐶0 + 𝐶1 (1 − 𝑒
(−
3ℎ2

𝑎2
)
) 𝑠𝑖 ℎ > 0

 (7)

Fig. 7 SemiVariograma Teòric ajustat amb un model gaussià.

11

MODEL CIRCULAR

El model circular (Fig. 8) s’ajusta de forma molt semblant al model esfèric exposat

anteriorment, utilitzant una funció circular per ajustar el SemiVariograma.

 𝛾(ℎ) =

{

0 𝑠𝑖 ℎ = 0

𝐶0 + 𝐶1(1 −
2

𝜋
cos−1 (

ℎ

𝑎
) +

2ℎ

𝜋𝑎
√1 − (

ℎ

𝑎
)
2

) 𝑠𝑖 0 < ℎ ≤ 𝑎

𝐶0 + 𝐶1 𝑠𝑖 ℎ > 𝑎

 (8)

Fig. 8 SemiVariograma Teòric ajustat amb un model cúbic.

MODEL CÚBIC

El model cúbic és molt semblant al model Gaussià explicat anteriorment, també té la mateixa

tendència amb un comportament parabòlic a prop del origen.

 𝛾(ℎ) = {
𝐶0 + 𝐶1 (7(

ℎ

𝑎
)
2

−
35

4
(
ℎ

𝑎
)
3

+
7

2
(
ℎ

𝑎
)
5

−
3

4
(
ℎ

𝑎
)
7

) 𝑠𝑖 0 ≤ ℎ ≤ 𝑎

𝐶0 + 𝐶1 𝑠𝑖 ℎ > 𝑎

 (9)

MODEL ESTABLE I MATERN

Són dos models d’ajustament que s’utilitzaran a la part pràctica degut a què, per defecte,

venen implementats en la llibreria utilitzada, però no se’ls donarà importància.

Cada un dels models d’ajustament exposats s’utilitzen en diferents ocasions i en diferents

àmbits de treball en funció de la naturalesa de les dades amb què es treballa. Com a norma

general, un dels models que s’ajustarà millor a les nostres necessitats serà un model esfèric

(Adhikary et al., 2016).

12

Per poder decidir quin dels següents models cal escollir podem valorar quin és l’Error Quadràtic

Mitjà (RMSE), que compara el valor predit segons el SemiVariograma Teòric (𝑦̂𝑖) i els valors del

SemiVariograma Empíric (𝑦𝑖), seguint la formula següent:

 𝑅𝑀𝑆𝐸 = √
∑ (𝛾𝑖 − 𝛾𝑖)

2𝑁
𝑖=1

𝑁
 (10)

𝛾𝑖 → 𝑉𝑎𝑙𝑜𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑡𝑠 𝑒𝑛 𝑆𝑒𝑚𝑖𝑉𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚𝑎 𝑇𝑒ò𝑟𝑖𝑐 .
𝛾𝑖 → 𝑉𝑎𝑙𝑜𝑟𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡 𝑒𝑛 𝑆𝑒𝑚𝑖𝑉𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚𝑎 𝐸𝑚𝑝í𝑟𝑖𝑐 .

Un cop ja s’ha escollit quin model utilitzarem per ajustar el nostre SemiVariograma utilitzarem

aquella funció per calcular els nous punts de la nostra interpolació.

3.1.2 INVERSE DISTANCE WEIGTHED INTERPOLATION
El mètode Inverse Distance Weighting interpolation (IDW) és un mètode senzill i no requereix

de costos computacionals elevats, sent així un dels models deterministes més utilitzats en la

interpolació espacial i amb uns costos computacionals relativament baixos (Lu & Wong, 2008).

Per aquesta raó es considera aquest model d’interpolació com a un dels mètodes estàndard en

l’àmbit de la ciència de la informació geogràfica (Burrough & McDonnell, 1998) i s’utilitza en

molts softwares GIS, ja que no són necessaris molts coneixements en estadística geoespacial.

Tal com s’ha explicat abans, aquest mètode s’utilitza per determinar el valor 𝑍̂(𝑆0) en el punt

𝑆0. 𝑍̂(𝑆0) es calcula a partir de l’Eq.11.

 𝑍̂(𝑆0) =∑𝑤𝑖𝑍(𝑆𝑖)

𝑁

𝑖=1

 (11)

Amb la condició de

 ∑𝑤𝑖

𝑁

𝑖

= 1 (12)

Com observem en l’Eq. 11 l’estimació de la nova profunditat/coordenada 𝑍 és una combinació
lineal dels pesos (𝑤𝑖) i els valors de profunditat/coordenada 𝑍 de les dades, on 𝑤𝑖 segueix la
fórmula següent:

 𝑤𝑖 =
1/𝑑0𝑖

2

∑ 1/𝑑0𝑗
2𝑁

𝑗=1

=
𝑑0𝑖
−2

∑ 𝑑0𝑗
−2𝑁

𝑗=1

 (13)

 𝑑 ∶ É𝑠 𝑙𝑎 𝑑𝑖𝑠𝑡à𝑛𝑐𝑖𝑎 𝑞𝑢𝑒 ℎ𝑖 ℎ𝑎 𝑒𝑛𝑡𝑟𝑒 𝑙𝑒𝑠 𝑐𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑒𝑠

(𝑋0, 𝑌0) 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡𝑠 𝑆0 𝑖 (𝑋𝑖, 𝑌𝑖) 𝑑𝑒𝑙 𝑝𝑢𝑛𝑡 𝑆𝑖.

Per al càlcul de la distància 𝑑 s’ha de tenir en compte quina és l’estructura de les dades, ja que
podríem tenir els punts en coordenades UTM, donades en metres, o bé en coordenades
geogràfiques, donades en graus. És important saber-ho perquè per la fórmula del càlcul de
distàncies en coordenades UTM podem utilitzar Pitàgores. En coordenades geogràfiques (𝑥, 𝑦),
𝑥 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑, 𝑦 = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑, la longitud d’un grau sobre un paral·lel disminueix en augmentar la

13

valor absolut de la latitud. La distància entre dos punts de coordenades geogràfiques (𝑥1, 𝑦1) i
(𝑥2, 𝑦2), suposades en radians ve donada per (Whittlesey, 2020),

𝑑 = 𝑅 ∗ arccos (cos (

𝜋

2
− 𝑦0) cos (

𝜋

2
− 𝑦𝑖)

+ sin (
𝜋

2
− 𝑦0) sin (

𝜋

2
− 𝑦𝑖) cos(𝑥𝑖 − 𝑥0))

(14)

𝑥0 → 𝐶𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑎 𝑋 𝑞𝑢𝑒 𝑣𝑜𝑙𝑒𝑚 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑟.
𝑦0 → 𝐶𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑎 𝑌 𝑞𝑢𝑒 𝑣𝑜𝑙𝑒𝑚 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑟.
𝑥𝑖 → 𝐶𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑎 𝑋 𝑑′𝑢𝑛 𝑝𝑢𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡.
𝑦𝑖 → 𝐶𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑎 𝑌 𝑑′𝑢𝑛 𝑝𝑢𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡.
𝑅 → 𝑅𝑎𝑑𝑖 𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑒 𝑒𝑛 𝑓𝑢𝑛𝑐𝑖ó 𝑑𝑒 𝑙𝑎 𝑙𝑜𝑐𝑎𝑙𝑖𝑡𝑧𝑎𝑐𝑖ó 𝑑𝑒𝑙𝑠 𝑝𝑢𝑛𝑡𝑠 𝑔𝑒𝑜𝑔𝑟à𝑓𝑖𝑐𝑠.

El radi de la terra dependrà de la zona on estiguem, generalment se n’utilitzen tres, el radi de la
terra a l’equador, el radi en els pols i el radi mitjà de la terra.

Radi Equatorial 6378.10 Km

Radi Polar 6356.80 Km

Radi Mitjà 6371.00 Km

Taula 1. Valors en kilòmetres del radi de la Terra.

Llavors, segons les fórmules que acabem de veure, s’hauran de calcular uns pesos diferents per
a cada un dels nous punts que vulguem calcular, on aquests són inversament proporcionals a la
distància (𝑑0𝑖) al quadrat que hi ha entre el nou punt (𝑆0) i cadascun dels punts de les nostres
dades (𝑆𝑖) (Lu & Wong, 2008).

Com podem extrapolar del que s’acaba d’explicar, l’elecció de quants veïns s’agafin per realitzar
el càlcul dels pesos (𝑤𝑖), aquests tindran un efecte directe en com es comportarà la interpolació.
L’elecció del nombre de veïns també es veu determinat per la variança que tenen les nostres
dades, ja que si no tenim grans variacions en zones petites agafant pocs veïns ja tindrem una
interpolació acceptable, però si al contrari tenim una zona amb grans variacions en zones molt
petites el més segur és que necessitem més veïns per calcular la interpolació.

3.1.3 RADIAL BASIS FUNCTION INTERPOLATION
El mètode Radial Basis Funtion (RBF) Interpolation és un mètode d’interpolació

multidimensional de dades no estructurades molt potent i dels més utilitzat que hi ha (Wright,

2003). S’utilitza en sectors com el Cartogràfic (que és amb la finalitat que l’utilitzarem aquí), però

fins i tot s’utilitza en xarxes neuronals destinades a Machine Learning (Karayiannis & Randolph-

Gips, 2003).

La definició d’aquest mètode ve donada per les següents equacions. Aquestes signifiquen que,

per un conjunt de 𝑁 dades amb les seves corresponents coordenades XYZ, la nova coordenada

𝑍̂ del punt 𝑆0, està definida pel sumatori d’un pes (𝑤𝑖) multiplicat pel seu kernel ([𝐾]0𝑖).

 𝑍̂(𝑆0) =∑𝑤𝑖[𝐾]0𝑖

𝑁

𝑖=1

 (15)

14

El kernel pot tenir diferents definicions, com per exemple la Multiquadràtica, la Multiquadràtica
Inversa o la Gaussiana entre d’altres.

 𝑘(𝑥𝑖, 𝑥𝑗) = √1 + (𝛽 ∙ ‖𝑥𝑖 − 𝑥𝑗‖)2 = [𝑲]𝒊𝒋 (16)

 Radial Basis Function Kernel - > Multiquadràtic

 𝑘(𝑥𝑖, 𝑥𝑗) =
1

1 + (𝛽 ∙ ‖𝑥𝑖 − 𝑥𝑗‖)2
= [𝑲]𝒊𝒋 (17)

 Radial Basis Function Kernel - > Multiquadràtic Inversa

 𝑘(𝑥𝑖, 𝑥𝑗) = e−(𝛽∙‖𝑥
𝑖− 𝑥𝑗‖)

2

= [𝑲]𝒊𝒋 (18)

 Radial Basis Function Kernel - > Gaussiana

Els kernels són distribucions de densitat simètriques al voltant del punts escollit per a cada un
d’ells. Les hipòtesis que hem fet ens permeten transformar les equacions en un sistema
d’equacions lineal com es veu en l’Eq. 19, per trobar la solució a la nostra funció d’interpolació.

(

[𝐾]11 [𝐾]12 [𝐾]13 … [𝐾]1𝑁
[𝐾]21
[𝐾]31
⋮

[𝐾]𝑁1

[𝐾]22 [𝐾]23 … [𝐾]2𝑁
[𝐾]32 [𝐾]33 … [𝐾]3𝑁
⋮

[𝐾]𝑁2

⋮
[𝐾]𝑁3

⋱
…

⋮
[𝐾]𝑁𝑁)

(

𝑤1
𝑤2
𝑤3
⋮
𝑤𝑁)

=

(

𝑧1
𝑧2
𝑧3
⋮
𝑧𝑁)

 (19)

Resolent el sistema d’equacions lineal de l’Eq. 18 podem resoldre l’Eq. 14, que ens permetrà

així calcular la 𝑍̂(𝑆0) del nou punt que volem interpolar. El procés es repeteix per a cada un

dels nous punts que volem calcular.

3.1.4 MÈTODES DE VALIDACIÓ
Per dur a terme una validació de com són de fiables cadascun dels mètodes d’interpolació

proposats, el que fem és interpolar en coordenades (𝑋, 𝑌) on ja tenim una 𝑍 coneguda per

després calcular quin error tenim entre el valor real i el valor interpolat. D’aquesta manera,

podem seguir un mateix criteri a l’hora d’avaluar l’eficàcia de cada un dels mètodes.

Per a cada una dels punts de validació es calcula l’Error Absolut i l’Error Relatiu.

L’Error Absolut (Eq. 20) és la diferencia entre un valor real i un valor calculat.

 𝐸𝑟𝑟𝑜𝑟 𝐴𝑏𝑠𝑜𝑙𝑢𝑡 = |𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙 − 𝑉𝑎𝑙𝑜𝑟 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡| (20)

L’Error Relatiu (Eq. 21) és la ratio entre l’Error Absolut i el Valor real.

 𝐸𝑟𝑟𝑜𝑟 𝑅𝑒𝑙𝑎𝑡𝑖𝑢 =
|𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙 − 𝑉𝑎𝑙𝑜𝑟 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡|

|𝑉𝑎𝑙𝑜𝑟 𝑅𝑒𝑎𝑙|
 (21)

D’aquesta manera obtindrem la coordenada (𝑋, 𝑌) amb la 𝑍 𝑅𝑒𝑎𝑙 i 𝑍 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑑𝑎, i el seu

respectiu error absolut i error relatiu.

15

Per tal d’intentar estandarditzar el càlcul de l’error total que té el model es calcularà el Mean

Squared Error (MSE) i el Root Mean Square Error (RMSE).

El MSE (Eq. 22) ens diu com de propera és la línia als nostres punts. Per fer-ho utilitza la distància

entre els punts reals i els interpolats. La quadratura s’utilitza per eliminar signes negatius i donar-

li més pes a aquells errors que tenen una distància més gran. Llavors, com més petit sigui el MSE,

millor serà el model (Statistics How To, n.d.-a).

 𝑀𝑆𝐸 =
∑ (𝑧̂𝑖 − 𝑧𝑖)

2𝑁
𝑖=1

𝑁
 (22)

𝑧̂𝑖 → 𝑉𝑎𝑙𝑜𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑡𝑠 𝑒𝑛 𝑒𝑙 𝑝𝑢𝑛𝑡 𝑖.
𝑧𝑖 → 𝑉𝑎𝑙𝑜𝑟𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡 𝑒𝑛 𝑒𝑙 𝑝𝑢𝑛𝑡 𝑖.

El RMSE és l’arrel quadrada del MSE i és la desviació estàndard de l’error que hem tingut en el

moment d’interpolar (Statistics How To, n.d.-b).

 𝑅𝑀𝑆𝐸 = √
∑ (𝑧̂𝑖 − 𝑧𝑖)

2𝑁
𝑖=1

𝑁
 (23)

𝑧̂𝑖 → 𝑉𝑎𝑙𝑜𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑡𝑠 𝑒𝑛 𝑒𝑙 𝑝𝑢𝑛𝑡 𝑖.
𝑧𝑖 → 𝑉𝑎𝑙𝑜𝑟𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡 𝑒𝑛 𝑒𝑙 𝑝𝑢𝑛𝑡 𝑖.

En ultima instància, calculem la diferència entre el vector de coordenades 𝑍 𝑅𝑒𝑎𝑙 i

𝑍 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑑𝑎 en els punts de validació, i fem la norma d’aquesta diferència.

 𝐷 = ‖𝑍 𝑅𝑒𝑎𝑙 − 𝑍 𝐼𝑛𝑡𝑒𝑟𝑝‖ (24)

𝑍 𝑅𝑒𝑎𝑙 → 𝑉𝑒𝑐𝑡𝑜𝑟 𝑎𝑚𝑏 𝑙𝑒𝑠 𝑐𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑒𝑠 𝑍 𝑅𝑒𝑎𝑙𝑠 𝑑𝑒𝑙𝑠 𝑝𝑢𝑛𝑡𝑠 𝑑𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑐𝑖ó.
𝑍 𝐼𝑛𝑡𝑒𝑟𝑝 → 𝑉𝑒𝑐𝑡𝑜𝑟 𝑎𝑚𝑏 𝑙𝑒𝑠 𝑐𝑜𝑜𝑟𝑑𝑒𝑛𝑎𝑑𝑒𝑠 𝑍 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑑𝑒𝑠 𝑑𝑒𝑙𝑠 𝑝𝑢𝑛𝑡𝑠 𝑑𝑒 𝑣𝑎𝑙𝑖𝑑𝑎𝑐𝑖ó.

16

3.2 GENERACIÓ DE LA MALLA 3D
Un cop interpolats els punts d'interès el que tindrem és un arxiu .csv on la primera columna són

les coordenades 𝑋, la segona columna són les coordenades 𝑌 i la darrera columna són les

Coordenades 𝑍, per tant, per cada una de les files tenim un punt (𝑋, 𝑌, 𝑍).

Per a poder imprimir necessitem crear un arxiu STL (de l’anglès "STereoLithography"). És un

format d'arxiu utilitzat en sistemes CAD (disseny assistit per computadora), que defineix quina

és l'estructura d'un objecte en tres dimensions. El principal objectiu dels fitxers STL és codificar

l'estructura d'un objecte 3D. (All3DP, 2021).

El primer pas que fem per aconseguir un arxiu STL per enviar-lo a la impressora 3D, és generar

una malla de triangles en format (STL), però sense gruix, dels resultats de la interpolació. Per

fer-ho s'ha fet ús de la Triangulació de Delaunay. Un cop arribats a aquest punt emprant el

software de MeshMixer li donarem gruix al STL per enviar-lo a imprimir.

3.2.1 TRIANGULACIÓ DE DELAUNAY
La Triangulació de Delaunay és una xara de triangles que compleix una condició, la condició de

Delaunay. Aquesta diu que la circumferència circumscrita és la que passa per tots els vèrtexs del

triangle i no conté en el seu interior cap altra punt de la triangulació (Simmons, 2017). Qualsevol

conjunt de punts en el pla admet una triangulació de Delaunay (Cheng et al., 2013).

Fig. 9 Exemple de la Condició per fer la Triangulació de Delaunay. A l’esquerra observem una triangulació de

Delaunay no admissible, i a la dreta n’observem una d’admissible.

Un cop generat el fitxer STL de la superfície interpolada, l’importem al software MeshMixer.

3.2.2 SOFTWARE MESHMIXER
El primer pas que s'ha de fer és importar el fitxer STL generat amb la triangulació de Delaunay

al software MeshMixer, és importar aquest fitxer, per fer-ho li donem a "Import" i busquem el

STL al nostre directori de treball.

Abans de prosseguir hem de tenir clares les dimensions en les quals voldrem treballar, ja que en

el moment de fer la impressió 3D dependrem molt de les dimensions de la impressora.

17

El següent que farem és centrar l'objecte en les coordenades (0, 0, 0). Per fer-ho anirem a "Edit"

– "Transform", i un cop s’obri el menú de transformació, canviarem el "Translate X", el "Translate

Y" i el "Translate Z" a zero.

A continuació en el mateix menú de "Transform" ajustem les dimensions dels eixos en funció de

les dimensions de la impressora. Com a norma general els eixos estan distribuïts com veiem en

la Fig. 10. Hem d'escalar l'eix que abans s'apropi al límit de la impressora. Per fer-ho canviarem

el valor de "Size" en l'eix que volem i mentre l'opció de "Uniform Scaling" estigui activada, el

programa escalarà l'objecte en tots tres eixos per igual.

Fig. 10 Eixos en el software MeshMixer.

El pas següent el farem únicament si després de generar el STL de la superfície, la direcció de les

normals, que són els vectors perpendiculars als plans generats per cada un del triangles de la

malla, està en direcció cap avall, es a dir, la component de la normal és negativa, com es mostra

a la Fig. 11.

Si és el cas, únicament hem d’anar a l’opció de “Select” i fer dos clics en l’objecte, això farà que

el seleccionem tot. Un cop el tenim tot seleccionat anem a “Edit...” i fem clic a l’opció de “Flip

normals”. Si hem seguit els passos correctament, tindrem l’objecte com el veiem a la Fig. 12.

Fig. 11 Visualització del STL abans de direccionar el

vector de les normals.
Fig. 12 Visualització del STL després de direccionar el

vector de les normals.

Arribats a aquest punt farem una ullada per tal de veure si la nostre malla té defectes i si els té

arreglar-los. Exemples de defectes són els que podem veure a la Fig. 13 i la Fig. 14. Ens trobem

dos tipus de defectes, un d’ells és el que es generen en els extrem de la malla on tenim pendents

pronunciades, que fan que es formin parets que uneixen la pendent en els extrems de la malla,

l’altre es genera pel fet que tenim una zona amb pocs nodes (vèrtex del triangles) i una pendent

molt pronunciada, com a conseqüència veiem que els triangles no s’han generat del tot bé.

18

Fig. 13 Defecte probocada per tenir pocs punts en una

zona amb molta pendent.
Fig. 14 Defecte en l’extrem de la malla, que forma una

paret.

Per solucionar el primer defecte, el que farem és anar a “View” i activar l’opció “Show

Wireframe” o prémer la tecla W per veure la malla de triangles. Després amb el “Select” amb

l’opció “Size” a zero seleccionarem els triangles que volem eliminar com es mostra en la Fig. 15.

Una vegada seleccionats, premem la tecla “Supr” per eliminar-los.

Fig. 15 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 14.

Per eliminar l’últim defecte comentat, el que farem és seleccionar tot l’objecte/malla anant a

l’opció de “Select” i farem dos clic a l’objecte, i aquest cop anem a “Edit...” i fem clic a l’opció de

“Remesh” o prement la tecla R. I deixant els valors per defecte li donarem a acceptar. Aquest

procés no només ens ajuda a reparar la nostra malla sinó que a més ens la suavitza fent-la una

malla regular.

19

Fig. 16 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 13

Aquest pas és molt important, ja que quan es genera el primer fitxer STL, la triangulació es fa en

dues dimensions i després se'ls dóna els valors de profunditat provocant aquests desperfectes.

És per això, que remallar és un pas molt rellevant, pel fet que estem regularitzant tota la malla

però aquest cop en tres dimensions. El que significa és que tenim en compte les tres

coordenades de cada punt per generar els triangles, per això queden tots amb una forma molt

similar.

Finalment, haurem de donar-li gruix. Per fer-ho tornarem a anar a l’opció de “Select” i farem

dos clic a l’objecte, i aquest cop anem a “Edit...” i fem clic a l’opció de “Extrude” o amb tot

seleccionat, premem la tecla D i s’obrirà el següent menú.

Les opcions signifiquen:

- Offset: el gruix que li volem donar.

- Harden: com seran de suaus les cantonades del gruix,

com més a prop de 0 més suaus seran les cantonades.

- Density: la densitat que tindrà l’interior del volum.

Aquesta densitat serà condicionant a l’hora de la impressió, ja

que a més densitat gastarem més material i trigarem més temps

a imprimir.

- Direction: És la direcció que volem que segueixi el gruix.

Tenim l’opció per defecte, “Constant”, que donarà el gruix en

direcció als vectors normal dels triangles. I després tindrem

l’opció de seguir qualsevol dels eixos XYZ.

- EndType: Per defecte, tindrem l’opció de “Offset”, que

el que fa és donar la mateixa forma de la superfície original per

generar la segona cara del gruix. Per altra banda, tenim l’opció

de “Flat” que, com diu la paraula, l’altra cara serà un pla.

Per finalitzar l’”Extrude” cliquem el botó “Accept” i aconseguirem un objecte amb gruix com el

que veiem a la següent Fig. 17.

20

Fig. 17 Visualització de com quedarà el STL amb gruix.

Abans d’exportar el model hem de comprovar que les dimensions siguin aptes per a la nostra

impressora i si no és el cas i volem mantenir les dimensions originals del nostre objecte no tenim

més remei que tallar-lo. Per fer-ho, abans de tot hem de saber en quants trossos el volem tallar

i les dimensions de cadascun d’ells.

Una vegada sabem com farem els talls, anem a “Edit” i fem clic a l’opció de “Plane Cut”. En el

menú que s’obrirà tindrem dos variables, “Cut type” i “Fill type”. Com el que volem aconseguir

és dividir el l’objecte en diferent blocs i que cadascun d’ells tingui un gruix propi, aquestes

variables s’han desar en: “Slice (Keep Both)” i “Remeshed Fill” respectivament.

Per realitzar el tall apareixerà un pla que talla la figura com el que veiem a la Fig. 18. Aquest es

pot ajustar canviant l’orientació del pla i/o desplaçant-lo. Quan tinguem el pla en el lloc on volem

fer el tall li donem a acceptar i ens retornarà un objecte dividit en dos.

Fig. 18 Pla que talla l'objecte. Fig. 19 Com és veu l’objecte un cop tallat.

Però encara faltaria un últim pas per a poder exportar aquests dos objectes per separat. En el

mateix menú de “Edit” anem a l’opció “Separate Shells”. Automàticament ens dividirà l’objecte

en dos i ens obrirà el menú “Object Browser” on veurem que efectivament ja tindrem dos

objectes STL diferents.

Ara ja només quedarà exportar els models perquè una impressora 3D el pugui obrir. Per fer-ho

només haurem de clicar a “Export” i guardar-lo en format STL ASCII Format (*.stl).

21

3.3 IMPRESSORA 3D
La impressora utilitzada per fer totes les impressions és la Sigma R19 de l’empresa BCN3D.

Algunes de les especificacions més importants són (BCN3D, n.d.):

Volum d’impressió 210 x 297 x 210 mm

Numero d’extrusors 2

Resolució de posició Eix X: 0.0125 mm
Eix Y: 0.0125 mm
Eix Z: 0.001 mm

Temperatura de funcionament 15 ºC - 35 ºC

Temperatura d’extrusió màxima 290 ºC

Materials admissibles PLA / ABS / Nylon / PET-G / TPU / PVA /
Composites / Altres

Connectivitat Targeta SD, USB

Consum elèctric 240W

Software preparació fitxers BCN3D Cura = BCN3D Stratos

Taula 2. Especificacions de la impressora 3D Sigma R19 de BCN3D.

L’elecció d’aquesta impressora i no una altra és perquè és la que ens ha proporcionat els serveis

TIC de la UPC. Com bé diu en les especificacions s’utilitzarà el software del BCN3D Cura/Stratos

per preparar els fitxer abans d’imprimir-los.

Fig. 20 Impressora 3D, Sigma R19 de BCN3D.

Amb el software de BCN3D Cura/Stratos prepararem el fitxers STL generats en els passos

anteriors.

Un cop importem el STL que volem imprimir, el primer que farem serà centrar l’objecte al centre

de la base virtual de la impressora, seguidament desplegarem el menú de configuració de dalt a

la dreta. Però no ens serveix la configuració d’impressió predeterminada, per canviar-la

22

premerem l’apartat de “Custom”, ho deixarem tot en per defecte menys dos apartats, “Infill” i

“Support”.

El primer dels apartats que hem de canviar a criteri de l’usuari és el “Infill” que és la densitat i

forma que tindrà l’interior del volum del STL. La forma que tindrà dependrà molt de la forma

que tingui el STL. D’altra banda, la densitat és un punt molt important, ja que com més densitat

establim a la impressió, més material gastarem i el temps d’impressió serà més llarg. L’altre

apartat que hem de modificar és el “Support”, el qual hem de tenir igual que a la Fig. 21, que és

la configuració que s’ha utilitzat per fer les impressions.

Fig. 21 Configuració utilitzada en cada una de les impressions.

Seguidament li donarem al botó “Slice” o “Segmentación” de a baix a la dreta que començarà a

preparar com imprimirà el STL, el cost aproximat del material, de la impressió, i el temps que

trigarà. Si li donem a “Preview” podrem veure detalladament com es farà la impressió., incloent

tot els suports que necessitarem per imprimir. Ens mostrarà en color blau la impressió del STL,

en color verd, tota l’estructura dels suports que necessitarem per imprimir, i en color vermell

els moviments que farà l’extrusor.

Fig. 22 Visió detallada de com és farà la impressió.

Finalment, el darrer pas és exportar-ho tot en format *.gcode que serà el que la impressora

podrà llegir a l’hora de la impressió.

23

3.4 WORK FLOW

24

4 RESULTATS
S’han estudiat les següents zones geogràfiques: la costa de Vilanova i la Geltrú (Barcelona), la

topografia de Cap de Creus (Girona), una part de la costa de Gijón (Astúries) més específicament

el Cerro de Santa Catalina i les dues platges que té al costat i, finalment, l’illa de La Palma

(Canàries). Aquesta última zona és la que s’explicarà més detalladament en aquests apartat, la

resta de resultats els podrem trobar a l’apartat d’Annexes.

Les dades inicials de la illa de La Palma són una matriu 3 x 2 305 on la primera columna correspon

a la component 𝑥 dels punts, la segona columna a la coordenada 𝑦 dels punts i finalment la

tercera columna que correspon a la coordenada 𝑧 dels punts. Cada una de les files correspon a

un punt amb coordenades (𝑋, 𝑌, 𝑍).

Les dades estan en format de coordenades geogràfiques, el que significa que les components 𝑥

i 𝑦 no estan en metres sinó en graus (Latitud i Longitud). La representació visual de les nostres

dades la podem observar a la Fig. 23.

Fig. 23 Representació visual del Data Set de La Palma.

Dels 2305 punts (𝑋, 𝑌, 𝑍) inicials, 210 es destinaran a fer la validació del model i els 2095 restants

s’utilitzaran per fer les interpolacions.

25

4.1 IDW INTERPOLATION RESULTATS
Per a la primera de les interpolacions agafarem diverses distàncies al voltant de cada punt per

tal de veure com afecta el nombre de veïns seleccionats per interpolar en cada uns dels punts.

Els radis seleccionats són: 0.10, 0.25, 0.50, 1.00, 1.50, 2.00 (recordem que estem treballant amb

graus), per a cada una de les variables de la interpolació s'han interpolat 67 600 nous punts

(𝑋, 𝑌, 𝑍).

Com podem veure, a la taula comparativa de l’error obtingut de les interpolacions amb diferents

radis de veïns, com més gran és el radi tindrem uns errors més elevats que no pas si tenim un

radi més petit. Això és pel fet que com més veïns utilitzem per calcular un nou punt tindrem més

informació del terreny i conseqüentment els pesos estaran més repartits, reduint així la

importància dels veïns més propers. Però per altra banda, a menys veïns els pesos estaran

repartits entre menys veïns i d’aquesta forma se li donarà més importància als veïns més propers

que no pas abans. Cal, però, vigilar perquè si agafem un radi massa petit tindrem el problema

que depèn del punt que estiguem interpolant potser no trobem veïns dins del radi de recerca i

desafortunadament tindrem un valor 𝑁𝑎𝑁 (𝑁𝑜 𝐷𝑎𝑡𝑎).

 IDW Radial Distances

 0.01 0.025 0.05 0.1 0.15 0.2

Absolute Error NaN 100.0567 118.6891 170.0483 221.8803 270.2978

Relative Error NaN 3.0915 3.9345 5.8202 7.6967 9.4585

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ NaN 1449.9596 1719.9679 2464.2343 3215.3514 3916.9878

Taula 3. Diferents Errors calculats en les interpolacions IDW, segons el paràmetre Radial
Distances.

Aquí podem veure tres exemples de les distàncies 0.1, 0.25 i 10, de manera que a la primera de

totes veiem que agafant un radi massa petit no podrem fer una bona interpolació, ja que

tindrem llocs on no tindrem dades, i uns altres dos per comprovar la diferència entre la un radi

gran i un altre petit.

Per tal de comprovar que no tinguem un error en el càlcul de les distàncies, ja que quan parlem

de latitud i longitud un grau no fa referència a la mateixa distància a causa del fet que la terra

no és plana sinó que és el·lipsoide, s'ha repetit les interpolacions tenint en compte que 0.01

graus de latitud i longitud són aproximadament 1,1 km i 1 km respectivament, a la latitud de

l'illa de La Palma. Les interpolacions s'han repetit amb els següents paràmetres; 1, 2.5, 5, 10, 15,

i 20 km. Com a resultat de les interpolacions de comprovació obtenim la següent taula d'errors.

 IDW Radial Distances (Km)

 1.00 2.50 5.00 10.0 15.0 20.0

Absolute Error NaN 100.1564 118.8183 167.0847 218.3348 266.6001

Relative Error NaN 3.0530 3.8561 5.6285 7.4639 9.1852

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ NaN 1451.4044 1721.8408 2421.2873 3163.9719 3863.4019

Taula 4. Diferents Errors calculats en les interpolacions IDW, segons el paràmetre Radial
Distances.

26

A continuació podem veure el resultat de les dues interpolacions que tenen l’error més petit.

Fig. 24 Resultats de IDW amb Coordenades UTM i Radi

0.025 (GRAUS).
Fig. 25 Resultats de IDW amb Coordenades

Geogràfiques i Radi 2.50 Km.

Podem veure la diferència absoluta entre ambdues interpolacions a la Fig. 26

Fig. 26 Diferencia absoluta en metres entre les dos interpolacions de la Fig. 24 i la Fig. 25.

27

4.2 RBF INTERPOLATION RESULTATS
Per a la segona de les interpolacions agafarem diverses 𝛽 per tal de veure com afecta aquest

valor en l’error de la interpolació, tal i com s’ha fet en el mètode anterior amb les distàncies. Les

𝛽 seleccionades són: 0.25, 0.50, 1.00, 2.50, 5.00, i 10.0 (no unitats, perquè 𝛽 és adimencional),

per a cada una de les variables de la interpolació s’han interpolat 67 600 nous punts XYZ.

Per a realitzar aquesta interpolació s’ha utilitzat el Kernal de tipus multiquadràtic.

Com podem veure, a la taula comparativa de l’error obtingut de les interpolacions amb diferents

valors de 𝛽, com més gran sigui aquesta 𝛽 tindrem uns errors més petits que no pas si agaféssim

una 𝛽 més petita.

 RBF β

 2.50 5.00 10.0 25.0 50.0 75.0

Absolute Error 14836.194 22068.353 136324.31 271.4132 124.5988 95.7327

Relative Error 776.0150 1343.6044 9510.1604 9.5296 3.7539 2.9715

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 214996.88 319800.81 975526.87 3933.1511 1805.6087 1387.2983

Taula 5. Diferents Errors calculats en les interpolacions RBF, segons el paràmetre 𝛽.

A continuació podem veure el resultat de la interpolació amb l’error més petit.

 Fig. 27 Resultats de RBF amb un 𝛽 de 75.

28

4.3 KRIGING INTERPOLATION RESULTATS
Com hem vist a l’apartat 3.1.1, el primer que farem és fer el càlcul de les distàncies

paramètriques entre cada una de les parelles de punts com veiem a la Fig. 28.

Fig. 28 Parametric Distace (cada punt correspona a la distancia entre una parella de punts i la seva diferencia de Z).

A continuació s’han decidit diferents 𝑙𝑎𝑔𝑠(numero de punts) pels quals voldrem separar el

SemiVariograma empíric, com són 10, 20, i 30 𝑙𝑎𝑔𝑠 (Fig. 29). D’aquesta manera ja podrem veure

quina funció s’ajusta millor al SemiVariograma empíric, juntament amb aquest també s’ha

calculat el RMSE per tenir una idea anticipada de com de fiable serà cada una dels

SemiVariogrames teòrics que s’utilitzaran per fer les interpolacions.

Fig. 29 SemiVariograma Empíric amb diferents valors de 𝑙𝑎𝑔𝑠.

Com podem veure a la Fig. 30, a priori veient els ajustaments dels SemiVariogrames diríem que

el mètode Estable seria el que millor s’ajusta seguit per el model Gaussià.

29

Fig. 30 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent.

Una vegada ja tenim els SemiVariogrames teòrics amb les seves funcions definides es farà la

interpolació per a cada un dels models seleccionats, i un cop més calcularem l’error en base als

punts de validació comentats prèviament aconseguint els resultats de la taula següent.

 Kriging

 Spherical Exponential Gaussian Matern Stable Cubic

Absolute Error 74.9663 75.7820 263.9398 230.2162 100.7198 87.1327

Relative Error 2.5443 2.5952 10.7858 9.3413 3.2734 2.8298

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 1086.3649 1098.1861 3824.8515 3336.1493 1459.5684 1262.6732

Taula 6. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents
models.

A continuació podem veure el resultat de la interpolació que té l’error més petit.

Fig. 31 Resultat de la interpolació per Kriging Esfèric.

30

4.4 RESULTATS I PARÀMETRES PER LA CREACIÓ DEL FITXER STL
Una vegada ja sabem quina de les interpolacions volem imprimir, el que farem és executar el

codi de Python 3 que s’encarrega de la generació d’un primer fitxer STL de la superfície de la

interpolació seleccionada. És important que en aquest moment ajustem les dimensions dels

eixos XYZ perquè es pugui apreciar bé els resultats. En el nostre cas que tenim que els eixos XY

estan en graus de latitud i longitud, amb una diferència de dos graus com a molt, i que l'eix de

les Z està en metres, amb una diferència de 6000 metres. Si representéssim els resultats tal com

els tenim els que veuríem en el STL seria una columna de punts molt alta on no podriem

diferenciar res, és per això que en casos com aquesta, amb coordenades geogràfiques, que

redimensionem l'eix Z, en aquest cas el dividim per 3000 cada un dels valors del vector de zetes.

Fig. 32 Resultat visual després de fer Delaunay

sense fer el redimensionat en l'eix Z.
Fig. 33 Resultat visual després de fer Delaunay fent el

redimensionat en l'eix Z.

Seguidament obrim el fitxer STL al software MeshMixer i seguim els passos indicats a l’apartat

3.2.2. I en el moment que anem a donar el gruix al STL, a l’opció d’ ”Extrude”, en el nostre cas

els valors de les variables són les següents:

- Offset: 10 mm.

- Harden: 50 %.

- Density: 20 %.

- Direction: “Y Axis”.

- EndType: “Offset”.

Un cop ja tenim el STL amb el seu corresponent gruix, només caldrà separar el STL en diferents

STL per tal de poder-lo imprimir a més escala. El factor limitant de la mida d’aquestes particions

és el màxim de la impressora, en el nostre cas és de 210 x 297 x 210 mm, el factor limitant són

les eixos X i Y.

Aquest STL de l’illa de La Palma en concret s’ha dividit en 8 subfitxers, dos que corresponen a la

part topogràfica i les altres 6 a la part batimètrica. Per tal de separar els dos grups principals el

que fem és tallar al nivell del mar. Per la resta, en el cas de les 6 parts batimètriques s’ha optat

per realitzar els 6 subfitxer de les mateixes dimensions en X i Y, i pels altres dos de la part

31

topogràfica, hem seguit un criteri per tal d’evitar errors en les impressions intentant deixar tota

la part amb mes canvis d’altimetria en la peça més gran i la resta en una més petita, degut a que

no hi cabia tot en la primera.

La decisió de fer les particions d’aquesta manera és deu a què en el moment de la impressió

d’aquest tipus d’estructures es gastava molt de material per generar els suports de les partes

més elevades. Separant la topografia de la batimetria en el moment de la impressió ens

estalviem un 15% del material a utilitzar en aquesta maqueta.

Un cop ja tenim totes les peces impreses i enganxades obtindríem un resultat com el que es

mostra en la Fig. 34.

Fig. 34 Resultat final de les 8 impressions un cop muntades.

32

4.5 IMPRESSIÓ 3D DINS EL SANDBOX
Podem veure com queda la impressió del 8 fitxer STL muntats dins del SandBox. En la primera

Fig. 35 veiem només les isolínies d'altimetria, les quals no diferencien entre la part submergida

de la part que no ho està. Per altra banda, en la Fig. 36 veiem la mateixa representació que

abans, però, aquest cop s'ha augmentat el nivell del mar fins a la cota corresponent a zero

metres del NMM (Nivell Mitjà del Mar).

Fig. 35 Projecció de les isolínies del SandBox sobre la

impressió 3D.

Fig. 36 Projecció de la Fig. 35 augmentant el nivell del

mart fins a la cota 0 respecte al NMM.

33

5 DISCUSSIONS I CONCLUSIONS
Com hem vist, a l'hora de realitzar les interpolacions s’ha de decidir entre tres models i per cada

un d’ells també s'han de decidir paràmetres o models d’ajustament dins de cada un d'ells. És per

això que s'ha intentat donar la millor opció a escollir, però això no es pot fer, ja que cada DataSet

és diferent i necessitarà diferents paràmetres per trobar el millor ajustament. El que sí s'ha

aconseguit és considerar la millor elecció de paràmetres o el millor ajustament pels mètodes

amb els quals s'ha treballat.

El primer de tots els models utilitzats del que parlarem serà l'Inverse Distance Weighting

Interpolation (IDW). És un model que, com hem vist, es basa en la informació dels veïns que es

consideren dins d'un radi de cerca. Com menor sigui el radi, millors resultats obtindrem, a

condició que el radi sigui prou gran per a poder considerar algun veí dins la zona. Com més gran

és el radi tindrem més veïns que donen informació, estarem repartint els pesos entre tots ells i

això acaba sent contraproduent, ja que traiem importància als veïns més propers que realment

són els que ens interessen.

Com hem vist en la Fig. 26, la diferència entre interpolacions utilitzant Pitàgores i l’Eq. 14 és

gairebé nul·la. Per tant, podem dir que en zones properes a l'equador, com són les nostres zones

d'estudi, podem fer servir Pitàgores directament sobre coordenades geogràfiques. La qual cosa

ens reduirà molt el temps de computació.

Per al cos del Radial Basis Function Interpolation (RBF) tenim dos paràmetres que influiran en el

càlcul de la interpolació, el tipus de kernel i el valor que li donem a la 𝛽. En aquest cas s'ha fet

l'estudi amb el kernel de tipus exponencial i s'ha buscat la millor 𝛽 en funció de les dades. En

termes generals, en tots els data sets utilitzats veiem una tendència a què com més elevat és el

valor de la 𝛽 millor són les interpolacions. El valor de beta depèndra de les unitats que s’utilitzin.

El fet que la 𝛽 sigui més gran farà que els valors propers als kernels tinguin una variabilitat molt

petita respecte al centre del kernel.

Finalment, en l'últim mètode, el Kriging Ordinari, tenim diferents models. A priori, veient el

comportament dels SemiVariogrames podríem dir que clarament els models d’ajustament

Matern, Estable i Gaussià seran els que millors resultats donaran. Però el que millor s'ajusta a

totes les interpolacions realitzades és el model Esfèric, cosa que ja s'havia comentat

anteriorment.

La generació del fitxer STL per imprimir és un tema complicat, ja que no ha estat fàcil degut a la

manca de bibliografia específica d’aquest tema.

Finalment, s'ha generat un workflow molt complet des de l'inici fins a la generació del STL i la

seva impressió, on es contemplen molts punts d'error que podem trobar i com solucionar-los i

tot amb programes de llicència gratuïta, que era un dels principals reptes que es van platejar en

aquest projecte.

Cal comentar que per facilitat de comprensió i utilització els millors mètodes personalment són

l'IDW i el Kriging Ordinari.

34

6 LIMITACIONS I FUTUR PRÒXIM
Les principals limitacions durant tot el procés del projecte han estat a la part més practica, de
programació i de 3D. Tota la part de programació s’ha fet amb Python, que és un software lliure,
complint així un dels objectius principals del projecte, no necessitar cap mena de llicencia o
comprar cap programa per realitzar aquest WorkFlow. La limitació principal amb el llenguatge
de programació és que en el Grau de Ciències i Tecnologies del Mar de la UPC no es programa
en Python, pel contrari s’acostuma a utilitzar MatLAB. Però no és fins a l’últim quadrimestre a la
menció de Tecnologies a Vilanova i la Geltrú, que es comença a utilitzar Python. El tipus de codi
que s’ha utilitzat en el projecte requeria coneixements avançats, que finalment es van poder
adquirir. Tot i així, el procés d’interpolació complet on s’interpola amb diferents paràmetres per
a una posterior comparació requereix de molt de temps de computació per a un ordinador
convencional. És per això que, gracies a la universitat, s’ha tingut accés a un servidor capaç de
suportar aquesta càrrega de feina i realitzar totes les interpolacions de manera raonablement
ràpida.

L’altre principal limitació ha estat la impressora 3D que molt amablement ens ha deixat el servei
TIC de la UPC de Camins. És un model relativament petit i, per les dimensions en què volíem
imprimir, s’han hagut de fer talls en els models per tal de poder-los imprimir tots i posteriorment
unir-los.

Futur Pròxim

Com a futura línia de treball en aquest projecte, en el qual seguiré treballant, l’objectiu principal
és deixar-lo del tot optimitzat i llest per la seva utilització com a programari lliure per a qualsevol
usuari. Tot i que hi ha vàries parts del codi que ja han estat correctament optimitzades, n´hi ha
d’altres en les que encara es poden fer millores, per tal que aquest programari es pugui fer servir
des de qualsevol dispositiu sense cap problema.

35

7 BIBLIOGRAFIA
Adhikary, S. K., Muttil, N., & Yilmaz, A. G. (2016). Ordinary kriging and genetic programming for

spatial estimation of rainfall in the Middle Yarra River catchment, Australia. Hydrology
Research, 47(6), 1182–1197. https://doi.org/10.2166/nh.2016.196

All3DP. (2021). The STL File Format Simply Explained. Oct 28, 2021. https://all3dp.com/1/stl-
file-format-3d-printing/

ArcGIS. (n.d.). Cómo funciona Kriging. Retrieved April 11, 2022, from
https://desktop.arcgis.com/es/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-
works.htm

BCN3D. (n.d.). Manual De Usuario Sigma R19.
https://www.bcn3d.com/documents/Manual_de_Usuario_Sigma_R19.pdf

Burrough, P. A., & McDonnell, R. A. (1998). Principles of Geographical Information Systems.
Oxford University Press.

Cheng, S.-W., Dey, T. K., & Shewchuk, J. (2013). Delaunay Mesh Generation. CRC Press.

Córdoba, M., Paccioretti, P. A., Giannini Kurina, F., Bruno, C. I., & Balzarini, M. G. (2019). Guía
para el análisis de datos espaciales en agricultura.

Gabri. (2018). ¿Cómo funciona el semivariograma en la interpolación?
https://acolita.com/como-funciona-semivariograma-interpolacion/

GISGeography. (2022). Semi-Variogram: Nugget, Range and Sill.
https://gisgeography.com/semi-variogram-nugget-range-sill/

Introduction to Spatial Analysis. (n.d.). Retrieved April 11, 2022, from
https://planet.uwc.ac.za/nisl/gis/spatial/chap_1_31.htm

Karayiannis, N. B., & Randolph-Gips, M. M. (2003). On the construction and training of
reformulated radial basis function neural networks. IEEE Transactions on Neural
Networks, 14(4), 835–846. https://doi.org/10.1109/TNN.2003.813841

Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation
technique. Computers and Geosciences, 34(9), 1044–1055.
https://doi.org/10.1016/j.cageo.2007.07.010

Mälicke, M. (2021). Variogram models. https://scikit-
gstat.readthedocs.io/en/latest/reference/models.html?highlight=Variogram

Montero, J. M., Fernández-Avilés, G., & Mateu, J. (2012). Spatial and Spatio-Temporal
Geostatistical Modeling and Kriging. In Spatial and Spatio-Temporal Geostatistical
Modeling and Kriging. https://doi.org/10.1002/9781118762387

Plantamura F, & Oberti I. (2015). Is 3D Printed House Sustainable? Proceedings of International
Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban
Scale, 173–178. https://infoscience.epfl.ch/record/213312

Reed, S., Hsi, S., Kreylos, O., Yikilmaz, M. B., Kellogg, L. H., Schladow, S. G., Segale, H., & Chan,
L. (2016). Augmented reality turns a sandbox into a geoscience lesson. Eos, 97.
https://doi.org/https://doi.org/10.1029/2016EO056135

Schubert, C., Van Langeveld, M. C., & Donoso, L. A. (2014). Innovations in 3D printing: A 3D
overview from optics to organs. British Journal of Ophthalmology, 98(2), 159–161.
https://doi.org/10.1136/bjophthalmol-2013-304446

36

Serreta Oliván, A., & Playán Jubillar, E. (1993). MÉTODOS DE INTERPOLACIÓN DE ALTIMETRÍA
PARA LA GENERACIÓN DE MALLAS TOPOGRÁFICAS REGULARES EN PARCELAS DE RIEGO
POR SUPERFICIE (pp. 173–187).

Simmons, B. (2017). Circumcircle Circumscribed Circle. 19-Jul. Oct 28, 2021

Statistics How To. (n.d.-a). Mean Squared Error: Definition and Example. Retrieved May 17,
2022, from https://www.statisticshowto.com/probability-and-statistics/statistics-
definitions/mean-squared-error

Statistics How To. (n.d.-b). RMSE: Root Mean Square Error. Retrieved May 17, 2022, from
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/rmse-
root-mean-square-error

Tobi, A. L. M., Omar, S. A., Yehia, Z., Al-Ojaili, S., Hashim, A., & Orhan, O. (2018). Cost viability
of 3D printed house in UK. IOP Conference Series: Materials Science and Engineering,
319(1). https://doi.org/10.1088/1757-899X/319/1/012061

Whittlesey, M. (2020). Spherical Geometry and its Applications. CRC Press, 120.

Wright, G. B. (2003). Radial Basis Function Interpolation : Numerical and Analytical
Developments. University of Colorado.

Yoo, S. S. (2015). 3D-printed biological organs: Medical potential and patenting opportunity.
Expert Opinion on Therapeutic Patents, 25(5), 507–511.
https://doi.org/10.1517/13543776.2015.1019466

37

8 ÍNDEX DE FIGURES
Fig. 1 Gràfica que relaciona la distància entre parells de punts i la seva diferència absoluta en la

coordenada 𝑍. ... 7

Fig. 2 SemiVariograma Empíric (Córdoba et al., 2019). .. 7

Fig. 3 SemiVariograma teòric de un model Esfèric (Córdoba et al., 2019). 8

Fig. 4 SemiVariograma Teòric ajustat amb un model lineal. ... 9

Fig. 5 SemiVariograma Teòric ajustat amb un model esfèric. ... 9

Fig. 6 SemiVariograma Teòric ajustat amb un model exponencial. .. 10

Fig. 7 SemiVariograma Teòric ajustat amb un model gaussià. ... 10

Fig. 8 SemiVariograma Teòric ajustat amb un model cúbic. ... 11

Fig. 9 Exemple de la Condició per fer la Triangulació de Delaunay. A l’esquerra observem una

triangulació de Delaunay no admissible, i a la dreta n’observem una d’admissible. 16

Fig. 10 Eixos en el software MeshMixer. ... 17

Fig. 11 Visualització del STL abans de direccionar el vector de les normals. 17

Fig. 12 Visualització del STL després de direccionar el vector de les normals. 17

Fig. 13 Defecte probocada per tenir pocs punts en una zona amb molta pendent. 18

Fig. 14 Defecte en l’extrem de la malla, que forma una paret. .. 18

Fig. 15 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 14. 18

Fig. 16 Abans i despres de soluciona el defecte que presenta la malla de la Fig. 13 19

Fig. 17 Visualització de com quedarà el STL amb gruix. .. 20

Fig. 18 Pla que talla l'objecte... 20

Fig. 19 Com és veu l’objecte un cop tallat... 20

Fig. 20 Impressora 3D, Sigma R19 de BCN3D. ... 21

Fig. 21 Configuració utilitzada en cada una de les impressions. ... 22

Fig. 22 Visió detallada de com és farà la impressió. .. 22

Fig. 23 Representació visual del Data Set de La Palma. .. 24

Fig. 24 Resultats de IDW amb Coordenades UTM i Radi 0.025 (GRAUS). 26

Fig. 25 Resultats de IDW amb Coordenades Geogràfiques i Radi 2.50 Km. 26

Fig. 26 Diferencia absoluta en metres entre les dos interpolacions de la Fig. 24 i la Fig. 25. 26

Fig. 27 Resultats de RBF amb un 𝛽 de 75. ... 27

Fig. 28 Parametric Distace (cada punt correspona a la distancia entre una parella de punts i la

seva diferencia de Z). .. 28

Fig. 29 SemiVariograma Empíric amb diferents valors de 𝑙𝑎𝑔𝑠. ... 28

Fig. 30 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent. 29

Fig. 31 Resultat de la interpolació per Kriging Esfèric. .. 29

Fig. 32 Resultat visual després de fer Delaunay sense fer el redimensionat en l'eix Z. 30

38

Fig. 33 Resultat visual després de fer Delaunay fent el redimensionat en l'eix Z. 30

Fig. 34 Resultat final de les 8 impressions un cop muntades. .. 31

Fig. 35 Projecció de les isolínies del SandBox sobre la impressió 3D. ... 32

Fig. 36 Projecció de la Fig. 35 augmentant el nivell del mart fins a la cota 0 respecte al NMM. 32

Fig. 37 Representació visual del Data Set dels Canons Submarins. .. 39

Fig. 38 Resultats de IDW amb Coordenades Geogràfiques i Radi 2.50 Km. 39

Fig. 39 Resultats de RBF amb un 𝛽 de 75. ... 40

Fig. 40 SemiVariograma Empíric amb diferents valors de lags. .. 40

Fig. 41 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent. 41

Fig. 42 Resultat de la interpolació per Kriging Esfèric. .. 41

Fig. 43 Representació visual del Data Set de Vilanova i la Geltrú. .. 42

Fig. 44 Resultats de IDW amb Coordenades UTM i Radi 200 metres. .. 43

Fig. 45 Resultats de RBF amb un 𝛽 de 0,10. .. 43

Fig. 46 SemiVariograma Empíric amb diferents valors de lags. .. 44

Fig. 47 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent. 44

Fig. 48 Resultat de la interpolació per Kriging Cubic. .. 45

Fig. 49 Resultat de la interpolació per Kriging Esfèric. .. 45

Fig. 50 Comparativa entre les interpolacions de la Fig. 46 i de la Fig. 47, on veiem que la

diferencia és mínima. .. 45

Fig. 51 Representació visual del Data Set de Cap de Creus. ... 46

Fig. 52 Resultats de IDW amb Coordenades Geogràfiques i Radi 0.75 Km. 46

Fig. 53 Resultats de RBF amb un 𝛽 de 75. ... 47

Fig. 54 SemiVariograma Empíric amb diferents valors de lags. .. 47

Fig. 55 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent. 48

Fig. 56 Resultat de la interpolació per Kriging Esfèric. .. 48

Fig. 57 Representació visual del Data Set de la platja de Gijón. ... 49

Fig. 58 Resultats de IDW amb Coordenades Geogràfiques i Radi 0.10 Km. 49

Fig. 59 Resultats de RBF amb un 𝛽 de 200. ... 50

Fig. 60 SemiVariograma Empíric amb diferents valors de lags. .. 50

Fig. 61 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent. 51

Fig. 62 Resultat de la interpolació per Kriging Esfèric. .. 51

39

9 ANNEX

9.1 ALTRES RESULTATS

9.1.1 CANONS SUBMARINS
Input Points Data = 4320

Validation Points Data = 432

Output Points Data = 272 484

Fig. 37 Representació visual del Data Set dels Canons Submarins.

IDW

 IDW Radial Distances (Km)

 1.00 2.50 5.00 10.0 15.0 20.0

Absolute Error NaN 43.8010 60.5574 79.8936 87.9803 93.3535

Relative Error NaN 4.4342 6.9887 9.8385 10.9309 11.8451

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ NaN 910.3877 1258.6621 1660.5591 1828.6365 1940.3173

Taula 7. Diferents Errors calculats en les interpolacions IDW, segons el paràmetre Radial
Distances.

Fig. 38 Resultats de IDW amb Coordenades Geogràfiques i Radi 2.50 Km.

40

RBF

 RBF β

 2.50 5.00 10.0 25.0 50.0 75.0

Absolute Error 27729.596 12810.184 21022.898 113.4269 48.1130 36.1209

Relative Error 2351.8594 1254.4651 1487.2614 10.5290 4.5333 3.4686

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 576348.83 266254.67 436952.74 2357.5358 1000.0117 750.7602

Taula 8. Diferents Errors calculats en les interpolacions RBF, segons el paràmetre 𝛽.

Fig. 39 Resultats de RBF amb un 𝛽 de 75.

KRIGING

Fig. 40 SemiVariograma Empíric amb diferents valors de lags.

41

Fig. 41 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent.

 Kriging

 Spherical Exponential Gaussian Matern Stable Cubic

Absolute Error 30.6809 30.7142 84.9336 78.2171 92.7064 28.2086

Relative Error 2.4662 2.4693 7.9515 7.3791 8.5358 2.3270

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 637.6914 638.3839x 1765.3134 1625.7129 1926.8683 586.3067

Taula 9. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents
models.

Fig. 42 Resultat de la interpolació per Kriging Esfèric.

42

9.1.2 VILANOVA I LA GELTRÚ
Input Points Data = 1221

Validation Points Data = 123

Output Points Data = 68644

Fig. 43 Representació visual del Data Set de Vilanova i la Geltrú.

IDW

 IDW Radial Distances (m)

 175 200 225 250 275 300

Absolute Error NaN 0.7910 0.7910 0.7910 0.7910 0.7175

Relative Error NaN 1.6585 1.6585 1.6585 1.6585 2.0759

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ NaN 8.7729 8.7729 8.7729 8.7729 7.9583

Taula 10. Diferents Errors calculats en les interpolacions IDW, segons el paràmetre Radial
Distances.

43

Fig. 44 Resultats de IDW amb Coordenades UTM i Radi 200 metres.

RBF

 RBF β

 0.10 0.25 0.50 0.75 1.00 2.50

Absolute Error 0.2649 0.2707 0.2726 0.2733 0.2736 0.2742

Relative Error 0.4544 0.4675 0.4720 0.4735 0.4742 0.4756

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 2.9388 3.0025 3.0242 3.0315 3.0351 3.0417

Taula 11. Diferents Errors calculats en les interpolacions RBF, segons el paràmetre 𝛽.

Fig. 45 Resultats de RBF amb un 𝛽 de 0,10.

KRIGING

44

Fig. 46 SemiVariograma Empíric amb diferents valors de lags.

Fig. 47 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent.

 Kriging

 Spherical Exponential Gaussian Matern Stable Cubic

Absolute Error 0.3515 0.3793 0.2281 0.1970 0.2464 0.1177

Relative Error 0.6789 0.7810 0.3177 0.2766 0.3419 0.2134

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 3.8992 4.2076 2.5299 2.1854 2.7327 1.3060

Taula 12. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents
models.

45

.
Fig. 48 Resultat de la interpolació per Kriging Cubic. Fig. 49 Resultat de la interpolació per Kriging Esfèric.

Fig. 50 Comparativa entre les interpolacions de la Fig. 48 Resultat de la interpolació per Kriging Cubic.Fig. 48 i de la
Fig. 49, on veiem que la diferencia és mínima.

46

9.1.3 CAP DE CREUS
Input Points Data = 2854

Validation Points Data = 286

Output Points Data = 160000

Fig. 51 Representació visual del Data Set de Cap de Creus.

IDW

 IDW Radial Distances (Km)

 0.50 0.75 1.00 2.50 5.00 10.0

Absolute Error NaN 18.4942 19.7605 25.8372 33.0762 40.9095

Relative Error NaN 2.6628 2.8783 4.1495 6.8330 10.3767

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ NaN 312.7653 334.1804 436.9475 559.3696 691.8435

Taula 13. Diferents Errors calculats en les interpolacions IDW, segons el paràmetre Radial
Distances.

Fig. 52 Resultats de IDW amb Coordenades Geogràfiques i Radi 0.75 Km.

47

RBF

 RBF β

 2.50 5.00 10.0 25.0 50.0 75.0

Absolute Error 2755.2682 3078.5692 1406.1776 2272.5138 55.5511 34.1628

Relative Error 403.3842 491.6155 231.1720 305.3757 8.8751 4.8934

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 46595.813 52063.329 23780.622 38431.696 939.4545 577.7464

Taula 14. Diferents Errors calculats en les interpolacions RBF, segons el paràmetre 𝛽.

Fig. 53 Resultats de RBF amb un 𝛽 de 75.

KRIGING

Fig. 54 SemiVariograma Empíric amb diferents valors de lags.

48

Fig. 55 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent.

 Kriging

 Spherical Exponential Gaussian Matern Stable Cubic

Absolute Error 16.6053 16.63903 45.9315 15.8419 15.7010 15.8485

Relative Error 2.3900 2.3951 6.5934 2.6950 2.3860 2.6928

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 280.8226 281.3915 776.7734 267.9111 265.5290 268.0232

Taula 15. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents
models.

Fig. 56 Resultat de la interpolació per Kriging Esfèric.

49

9.1.4 GIJÓN
Input Points Data = 561

Validation Points Data = 57

Output Points Data = 127 449

Fig. 57 Representació visual del Data Set de la platja de Gijón.

IDW

 IDW Radial Distances (Km)

 0.10 0.25 0.50 1.00 2.50 5.00

Absolute Error 2.6766 3.6371 4.6975 5.5016 6.0899 6.1058

Relative Error 11.8573 18.3008 23.1113 29.0691 42.9566 43.2768

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 20.2085 27.4597 35.4653 41.5364 45.9781 46.0979

Taula 16. Diferents Errors calculats en les interpolacions IDW, segons el paràmetre Radial
Distances.

Fig. 58 Resultats de IDW amb Coordenades Geogràfiques i Radi 0.10 Km.

50

RBF

 RBF β

 25.0 50.0 75.0 100 150 200

Absolute Error 519.7808 1130.1413 104.2365 40.6662 5.3967 4.0545

Relative Error 6036.0833 20998.649 1310.4851 811.7448 30.0879 19.9041

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 3924.2593 8532.3801 786.9687 307.0236 40.7445 30.6111

Taula 17. Diferents Errors calculats en les interpolacions RBF, segons el paràmetre 𝛽.

Fig. 59 Resultats de RBF amb un 𝛽 de 200.

KRIGING

Fig. 60 SemiVariograma Empíric amb diferents valors de lags.

51

Fig. 61 SemiVariogrames empírics i teòrics amb el càlcul del RMSE corresponent.

 Kriging

 Spherical Exponential Gaussian Matern Stable Cubic

Absolute Error 2.8492 2.8802 3.6019 3.4312 3.7541 2.6898

Relative Error 12.9267 13.1875 21.7695 19.5155 23.7098 12.5136

‖𝑧 𝑅𝑒𝑎𝑙 − 𝑧 𝐼𝑛𝑡𝑒𝑟𝑝‖ 21.5113 21.7456 27.1938 25.9050 28.3433 20.3075

Taula 18. Diferents Errors calculats en les interpolacions Kriging Ordinari, segons els diferents
models.

Fig. 62 Resultat de la interpolació per Kriging Esfèric.

52

9.2 CODI PYTHON
El codi estarà penjat al següent repositoris de GitHub,

https://github.com/PolBanosCastello/Topographic-and-Bathymetric-Interpolation-Models.git

el qual s’anirà actualitzant fins optimitzar-lo el màxim possible, ja que seguiré treballant amb el

codi fins a deixar-lo llest per a l’ús públic de qualsevol usuari.

Però per a l’avaluació del treball deixaré el codi en els següents apartats.

9.2.1 IDW_multiprocessing.py
import time

import pandas as pd

import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1 import make_axes_locatable

from mpl_toolkits.mplot3d import axes3d

from rich import print as rprint

import numpy as np

import os

from tqdm.auto import tqdm

import math

from math import radians

from concurrent import futures

from rich.progress import Progress

import multiprocessing as mp

def cm_to_inch(value):

 return value/2.54

plt.rcParams["figure.figsize"] = [cm_to_inch(40), cm_to_inch(20)]

class IDW:

 point_folder = f'./Points/Subset_NAME_OF_DATASET/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 max_worker = mp.cpu_count() * 2

 @staticmethod

 def _multiprocess_index_handler(index, handler, args):

 result = handler(*args) # call the handler

 return index, result # add index to the result

 def multiprocess(self, arg_list, handler, max_workers=20, text: str = "progress..."):

 index = 0 # thread index

 ctx = mp.get_context('spawn')

 with futures.ProcessPoolExecutor(max_workers=max_workers, mp_context=ctx) as executor:

 processes = [] # empty thread list

 results = [] # empty list of thread results

 for args in arg_list:

 # submit tasks to the executor and append the tasks to the thread list

 processes.append(executor.submit(self._multiprocess_index_handler, index, handler,

args))

 index += 1

 with Progress() as progress: # Use Progress() to show a nice progress bar

 task = progress.add_task(text, total=index)

 for future in futures.as_completed(processes):

 future_result = future.result() # result of the handler

 results.append(future_result)

 progress.update(task, advance=1)

 # sort the results by the index added by __threadify_index_handler

 sorted_results = sorted(results, key=lambda a: a[0])

 final_results = [] # create a new array without indexes

 for result in sorted_results:

 final_results.append(result[1])

 return final_results

 def __init__(self, data_frame, df_validation, resolution_factor=10, reduction_scale=1):

 self.df = pd.DataFrame(data_frame.values, columns=['X', 'Y', 'Z'])

 self.reduction_scale = reduction_scale

 self.df['X'] = self.df['X'] * self.reduction_scale

 self.df['Y'] = self.df['Y'] * self.reduction_scale

https://github.com/PolBanosCastello/Topographic-and-Bathymetric-Interpolation-Models.git

53

 self.num_points = len(self.df)

 self.resolution_factor = resolution_factor

 self.df_validation = df_validation

 self.df_validation['X'] = self.df_validation['X'] * self.reduction_scale

 self.df_validation['Y'] = self.df_validation['Y'] * self.reduction_scale

 x_min, x_max = int(np.round(min(self.df['X']))), int(np.round(max(self.df['X'])))

 y_min, y_max = int(np.round(min(self.df['Y']))), int(np.round(max(self.df['Y'])))

 num_resolution = ((x_max - x_min) * self.resolution_factor)

 x = np.linspace(x_min, x_max, num=int(num_resolution))

 y = np.linspace(y_min, y_max, num=int(num_resolution))

 for a in range(0, len(self.df_validation['X'])):

 x = np.append(x, self.df_validation['X'][a])

 y = np.append(y, self.df_validation['Y'][a])

 self.df['X'] = self.df['X'] / self.reduction_scale

 self.df['Y'] = self.df['Y'] / self.reduction_scale

 self.df_validation['X'] = self.df_validation['X'] / self.reduction_scale

 self.df_validation['Y'] = self.df_validation['Y'] / self.reduction_scale

 x = x / self.reduction_scale

 y = y / self.reduction_scale

 rprint(f'Min-Max X: {round(min(x), 2)} - {round(max(x), 4)}')

 rprint(f'Min-Max Y: {round(min(y), 2)} - {round(max(y), 4)}')

 rprint(f'Size X: {x.size} - Size Y: {y.size}')

 self.xx, self.yy = np.meshgrid(x, y)

 self.zz = np.empty(self.xx.shape)

 self.zz[:] = np.nan

 def calculate_list_dist(self, xx_ij, yy_ij, type_coordinates, earth_radius=6371):

 list_dist = []

 if type_coordinates == 'GPS':

 for a in range(0, len(self.df['X'])):

 d = earth_radius * np.arccos((np.cos(radians(90-yy_ij)) * np.cos(radians(90-

self.df['Y'][a])) +

 np.sin(radians(90-yy_ij)) * np.sin(radians(90-

self.df['Y'][a])) *

 np.cos(radians(xx_ij-self.df['X'][a]))))

 if d == 90:

 rprint(d)

 if d != 0:

 b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a], d]

 list_dist.append(b)

 rprint(b)

 input()

 if type_coordinates == 'UTM':

 for a in range(0, len(self.df['X'])):

 if math.dist((self.df['X'][a], self.df['Y'][a]), (xx_ij, yy_ij)) != 0:

 b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a],

 math.dist((self.df['X'][a], self.df['Y'][a]), (xx_ij, yy_ij))]

 list_dist.append(b)

 df_dist = pd.DataFrame(list_dist, columns=['X', 'Y', 'Z', 'distance'])

 df_dist_by_dist = df_dist.sort_values('distance')

 return df_dist_by_dist

 def execute_method_no_multiprocessing(self,

 distance,

 file_name,

 type_coordinates,

 earth_radius=6371,

 show_prints=False):

 global dist_0_value

 rprint(f'Execute Inverse Distance Weight Interpolation with Radial Distance = {distance}')

 rprint(f'Process of IDW method with Radial Distance = {distance} ...')

 for i in tqdm(range(0, self.zz.shape[0])):

 for j in range(0, self.zz.shape[1]):

 if show_prints:

 print(i, j)

 # t = time.time()

 # rprint('[bold]XX - YY', i, '-', j, self.xx[i, j], self.yy[i, j])

 list_coord_and_dist = []

 list_dist = []

 if type_coordinates == 'GPS':

 for a in range(0, len(self.df['X'])):

 d = earth_radius * np.arccos(

 (np.cos(radians(90 - self.yy[i, j])) * np.cos(radians(90 -

self.df['Y'][a])) +

54

 np.sin(radians(90 - self.yy[i, j])) * np.sin(radians(90 -

self.df['Y'][a])) *

 np.cos(radians(self.xx[i, j] - self.df['X'][a]))))

 if d != 0:

 b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a], self.xx[i, j],

self.yy[i, j], d]

 list_dist.append(b)

 if type_coordinates == 'UTM':

 for a in range(0, len(self.df['X'])):

 if math.dist((self.df['X'][a], self.df['Y'][a]), (self.xx[i, j], self.yy[i,

j])) != 0:

 b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a],

 math.dist((self.df['X'][a], self.df['Y'][a]), (self.xx[i, j],

self.yy[i, j]))]

 list_dist.append(b)

 list_dist = sorted(list_dist)

 list_coord_and_dist = sorted(list_coord_and_dist)

 if show_prints:

 rprint(f'Radi = {distance}:', len(list_dist))

 rprint(f'Head list distances: {list_dist[:5]}')

 df_dist = pd.DataFrame(list_dist, columns=['X', 'Y', 'Z', 'distance'])

 df_dist_by_dist = pd.DataFrame(df_dist.sort_values('distance').values,

 columns=['X', 'Y', 'Z', 'distance'])

 rprint(df_dist_by_dist)

 input()

 if show_prints:

 rprint(df_dist_by_dist)

 vect_w = []

 vect_z = []

 dist_0 = False

 for a in range(0, len(df_dist_by_dist)):

 d = (math.dist((self.df['X'][a], self.df['Y'][a]), (self.xx[i, j], self.yy[i,

j])) ** 2)

 if d == 0:

 dist_0 = True

 else:

 w = 1 / (df_dist_by_dist['distance'][a] ** 2)

 vect_w.append(w)

 vect_z.append(df_dist_by_dist['Z'][a])

 if dist_0:

 if show_prints:

 print(f'[red]Radi = {distance}:', 'Diatance 0', '-->',

 self.xx[i, j], self.yy[i, j], dist_0_value)

 self.zz[i, j] = dist_0_value

 time.sleep(1.5)

 else:

 if len(vect_w) == 0:

 if show_prints:

 rprint(f'[yellow]Radi = {distance}:', 'nan')

 self.zz[i, j] = float("nan")

 time.sleep(1.5)

 else:

 if show_prints:

 rprint('Before Normalization: Sum W', sum(vect_w), type(sum(vect_w)))

 vect_w = (vect_w / sum(vect_w))

 if show_prints:

 rprint('After Normalization: Sum W', sum(vect_w), type(sum(vect_w)))

 vect_wz = np.array(vect_w) * np.array(vect_z)

 self.zz[i, j] = sum(vect_wz)

 if show_prints:

 a = 1

 print(a)

 rprint('Interpolation Finish.\nTransform Mesh into DataFrame')

 list_p = []

 for a in range(0, self.zz.shape[0]):

 for b in range(0, self.zz.shape[1]):

 P = [self.xx[a, b], self.yy[a, b], self.zz[a, b]]

 list_p.append(P)

 self.df_new = pd.DataFrame(list_p, columns=['X', 'Y', 'Z'])

55

 self.save_method(file_name, dist=distance)

 rprint(f'Finish Radial Distance = {distance}')

 return self.df_new

 def execute_method(self, distance, file_name, show_prints=False):

 rprint(f'Execute Inverse Distance Weight Interpolation with Radial Distance = {distance}')

 argument_list = []

 list = np.arange(0, self.max_worker + 1)

 index = 1

 for i in list:

 if i != list[-1]:

 inici = int(self.zz.shape[0] / self.max_worker) * (index - 1)

 final = int(self.zz.shape[0] / self.max_worker) * index

 index += 1

 else:

 inici = int(self.zz.shape[0] / self.max_worker) * self.max_worker

 final = self.zz.shape[0]

 myargs = [distance, file_name, 'UTM', inici, final]

 argument_list.append(myargs)

 rprint(f'Multiprocessing of IDW method with Radial Distance = {distance} ...')

 results = self.multiprocess(argument_list, self.execute_method_multiprocessing,

max_workers=self.max_worker)

 list_res = []

 for result in results:

 list_res += result

 df_lists = pd.DataFrame(list_res, columns=['Z'])

 df_lists.to_csv(f'{self.point_folder}IDW_optim_method.csv',

 index=False, header=True)

 zz = np.array(list_res).reshape(self.zz.shape[1], self.zz.shape[0])

 rprint(zz)

 rprint('Interpolation Finish.\nTransform Mesh into DataFrame')

 list_p = []

 for a in range(0, self.zz.shape[0]):

 for b in range(0, self.zz.shape[1]):

 P = [self.xx[a, b], self.yy[a, b], zz[a, b]]

 list_p.append(P)

 self.df_new = pd.DataFrame(list_p, columns=['X', 'Y', 'Z'])

 self.save_method(file_name, dist=distance)

 rprint(f'Finish Radial Distance = {distance}')

 return self.df_new

 def execute_method_multiprocessing(self,

 distance,

 file_name,

 type_coordinates,

 start,

 end,

 earth_radius=6371,

 show_prints=False):

 rprint(f'[green]Start Multiprocessing Interpolation with Radial Distance {distance} -->

{start} - {end} -- {self.zz.shape[0]}')

 list_results = []

 list_results_only = []

 for i in tqdm(range(start, end)):

 for j in range(0, self.zz.shape[1]):

 if show_prints:

 print(i, j)

 list_res_dist = []

 list_dist = []

 if type_coordinates == 'GPS':

 for a in range(0, len(self.df['X'])):

 alfa = (np.cos(radians(90 - self.yy[i, j])) * np.cos(radians(90 -

self.df['Y'][a])) +

 np.sin(radians(90 - self.yy[i, j])) * np.sin(radians(90 -

self.df['Y'][a])) *

 np.cos(radians(self.xx[i, j] - self.df['X'][a])))

 d = earth_radius * np.arccos(alfa)

 if d <= distance:

56

 b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a], self.xx[i, j],

self.yy[i, j], d]

 list_dist.append(b)

 list_res_dist.append(d)

 if type_coordinates == 'UTM':

 for a in range(0, len(self.df['X'])):

 d = math.dist((self.df['X'][a], self.df['Y'][a]), (self.xx[i, j], self.yy[i,

j]))

 if d <= distance:

 b = [self.df['X'][a], self.df['Y'][a], self.df['Z'][a], self.xx[i, j],

self.yy[i, j], d]

 list_res_dist.append(d)

 list_dist.append(b)

 list_dist = sorted(list_dist)

 if show_prints:

 rprint(f'Radi = {distance}:', len(list_dist))

 rprint(f'Head list distances: {list_dist[:5]}')

 df_dist = pd.DataFrame(list_dist, columns=['X', 'Y', 'Z', 'Mesh XX', 'Mesh YY',

'distance'])

 df_dist_by_dist = pd.DataFrame(df_dist.sort_values('distance').values,

 columns=['X', 'Y', 'Z', 'Mesh XX', 'Mesh YY',

'distance'])

 vect_w = []

 vect_z = []

 dist_0 = False

 for a in range(0, len(df_dist_by_dist)):

 d = df_dist_by_dist['distance'][a]

 if d == 0:

 dist_0 = True

 if show_prints:

 rprint(f'[red]Radi = {distance}:', 'Diatance 0', '-->',

 self.xx[i, j], self.yy[i, j], df_dist_by_dist['Z'][a])

 list_results.append((i, j, df_dist_by_dist['Z'][a], 'd = 0'))

 list_results_only.append(df_dist_by_dist['Z'][a])

 else:

 if not dist_0:

 w = 1 / (df_dist_by_dist['distance'][a] ** 2)

 vect_w.append(w)

 vect_z.append(df_dist_by_dist['Z'][a])

 if not dist_0:

 if len(vect_w) == 0:

 if show_prints:

 rprint(f'[yellwo]Radi = {distance}:', 'nan')

 list_results.append((i, j, 'nan', 'len(vect) = 0'))

 list_results_only.append('nan')

 else:

 if show_prints:

 rprint('Before Normalization: Sum W', sum(vect_w), type(sum(vect_w)))

 vect_w = (vect_w / sum(vect_w))

 if show_prints:

 rprint('After Normalization: Sum W', sum(vect_w), type(sum(vect_w)))

 vect_wz = np.array(vect_w) * np.array(vect_z)

 if show_prints:

 rprint(f'[blue]Radi = {distance}:', sum(vect_wz))

 list_results.append((i, j, sum(vect_wz), 'calcule w'))

 list_results_only.append(sum(vect_wz))

 if show_prints:

 a = 1

 print(a)

 rprint(f'[red]Finish Multiprocessing Interpolation with Radial Distance {distance} -->

{start} - {end} -- {self.zz.shape[0]}. {len(list_results)}')

 return list_results_only

 def save_method(self, name, dist):

self.df_new.to_csv(f'{self.point_folder}IDW_optim_method_{name}_Dist_{dist}_{self.num_points}_points.

csv',

 index=False, header=False)

 def load_last_method(self, name, dist):

 self.df_new = pd.read_csv(

57

 f'{self.point_folder}IDW_optim_method_{name}_Dist_{dist}_{self.num_points}_points.csv',

 header=None)

 self.df_new.columns = ['X', 'Y', 'Z']

 return self.df_new

 def calculate_error(self, name_save, method='MSE', show_plot=False):

 def find_nearest(df_predict, value_x, value_y, value_z, min_z_validate):

 if value_z == 0:

 value_z = 0.00001

 df_predict_x_array = df_predict.X.to_numpy()

 df_predict_y_array = df_predict.Y.to_numpy()

 idx_x = (min(np.abs(df_predict_x_array - value_x)))

 idx_y = (min(np.abs(df_predict_y_array - value_y)))

 for x_val in df_predict_x_array:

 if np.abs(x_val - value_x) == idx_x:

 x = x_val

 for y_val in df_predict_y_array:

 if np.abs(y_val - value_y) == idx_y:

 y = y_val

 df_aprox = df_predict[(df_predict['X'] == x) & (df_predict['Y'] == y)]

 array_aprox = df_aprox.to_numpy()

 escal_z = abs(min_z_validate) * 1.2

 val_z_escal = (value_z + escal_z)

 int_z_escal = (array_aprox[0][2] + escal_z)

 e_a_z_escal = abs(val_z_escal - int_z_escal)

 e_r_z_escal = (e_a_z_escal / abs(val_z_escal)) * 100

 lst = [value_x, value_y, value_z,

 array_aprox[0][0], array_aprox[0][1], array_aprox[0][2],

 abs(value_x - array_aprox[0][0]), abs(value_y - array_aprox[0][1]), e_a_z_escal,

 ((abs(value_x - array_aprox[0][0]) / abs(value_x)) * 100),

 ((abs(value_y - array_aprox[0][1]) / abs(value_y)) * 100),

 e_r_z_escal,

 [value_z, array_aprox[0][2], (abs(value_z - array_aprox[0][2])),

 ((abs(value_z - array_aprox[0][2]) / abs(value_z)) * 100)]]

 return lst

 comparative = []

 for i in tqdm(range(0, len(self.df_validation.values))):

 comparative.append(find_nearest(self.df_new, self.df_validation.X[i],

self.df_validation.Y[i],

 self.df_validation.Z[i],

min_z_validate=min(self.df_validation.Z)))

 df_comparative = pd.DataFrame(comparative,

 columns=['X_Real', 'Y_Real', 'Z_Real',

 'X_Interp', 'Y_Interp', 'Z_Interp',

 'X_Error_Absolute', 'Y_Error_Absolute',

'Z_Error_Absolute',

 'X_Error_Relative', 'Y_Error_Relative',

'Z_Error_Relative',

 'List_Real_Zs'])

df_comparative.to_csv(f'{self.point_folder}df_comparative_{name_save}_{self.num_points}_points.csv',

 index=False)

 sct = plt.scatter(df_comparative['X_Real'], df_comparative['Y_Real'], s=12,

 c=df_comparative['Z_Error_Absolute'], cmap='plasma')

 plt.axis('scaled')

 plt.colorbar(sct)

 plt.title(f'{name_save} Absolute Error')

 plt.savefig(f'{self.point_folder}Plot_Error_Absolute_{method}_{name_save}.png')

 if show_plot:

 plt.show()

 plt.close()

 sct = plt.scatter(df_comparative['X_Real'], df_comparative['Y_Real'], s=12,

 c=df_comparative['Z_Error_Relative'], cmap='plasma')

 plt.axis('scaled')

 col_bar = plt.colorbar(sct)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' % ', rotation=270)

 plt.title(f'{name_save} Relative Error')

 plt.savefig(f'{self.point_folder}Plot_Error_Relative_{method}_{name_save}.png')

 if show_plot:

 plt.show()

 plt.close()

 if method == 'MSE':

 ''' 1/n * sum((y - y')**2) '''

 e_abs_x = 0

58

 e_abs_y = 0

 e_abs_z = 0

 e_rel_x = 0

 e_rel_y = 0

 e_rel_z = 0

 for i in tqdm(range(0, len(df_comparative))):

 # print(df_comparative.X_Dist[i], df_comparative.Y_Dist[i], df_comparative.Z_Dist[i])

 e_abs_x += df_comparative.X_Error_Absolute[i] ** 2

 e_abs_y += df_comparative.Y_Error_Absolute[i] ** 2

 e_abs_z += df_comparative.Z_Error_Absolute[i] ** 2

 e_rel_x += df_comparative.X_Error_Relative[i] ** 2

 e_rel_y += df_comparative.Y_Error_Relative[i] ** 2

 e_rel_z += df_comparative.Z_Error_Relative[i] ** 2

 return ((e_abs_x / len(df_comparative)), (e_abs_y / len(df_comparative)),

 (e_abs_z / len(df_comparative))), \

 ((e_rel_x / len(df_comparative)), (e_rel_y / len(df_comparative)),

 (e_rel_z / len(df_comparative))), df_comparative

 if method == 'RMSE':

 ''' sqrt(1/n * sum((y - y')**2)) '''

 e_abs_x = 0

 e_abs_y = 0

 e_abs_z = 0

 e_rel_x = 0

 e_rel_y = 0

 e_rel_z = 0

 for i in tqdm(range(0, len(df_comparative))):

 # print(df_comparative.X_Dist[i], df_comparative.Y_Dist[i], df_comparative.Z_Dist[i])

 e_abs_x += df_comparative.X_Error_Absolute[i] ** 2

 e_abs_y += df_comparative.Y_Error_Absolute[i] ** 2

 e_abs_z += df_comparative.Z_Error_Absolute[i] ** 2

 e_rel_x += df_comparative.X_Error_Relative[i] ** 2

 e_rel_y += df_comparative.Y_Error_Relative[i] ** 2

 e_rel_z += df_comparative.Z_Error_Relative[i] ** 2

 return ((math.sqrt(e_abs_x / len(df_comparative))), (math.sqrt(e_abs_y /

len(df_comparative))),

 (math.sqrt(e_abs_z / len(df_comparative)))), \

 ((math.sqrt(e_rel_x / len(df_comparative))), (math.sqrt(e_rel_y /

len(df_comparative))),

 (math.sqrt(e_rel_z / len(df_comparative)))), df_comparative

if __name__ == "__main__":

 point_folder = f'./Points/Subset_NAME_OF_DATASET/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 point_folder_dataset = f'./Points/'

 if not os.path.exists(point_folder_dataset):

 os.mkdir(point_folder_dataset)

 else:

 pass

 FILE_NAME = 'NAME_OF_DATASET'

 RES_FACT =

 SCALE_FACT = 1

 list_dist = [0.50, 1.00, 2.50, 5.00, 10.0, 15.0, 20.0]

 ERROR_METHOD = 'RMSE'

 DO_INTERPOLATE = True

 CALCULATE_ERROR = True

 SHOW_PLOTS = False

 df = pd.read_csv(f'{point_folder_dataset}{FILE_NAME}.csv', sep=';')

 rprint(df)

 plt.scatter(df['X'], df['Y'], c=df['Z'], cmap='plasma')

 plt.title('Input Data NAME_OF_DATASET')

 plt.ylabel('Latitude')

 plt.xlabel('Longitude')

 col_bar = plt.colorbar()

 col_bar.ax.set_ylabel(' Meters ')

 plt.axis('scaled')

 plt.savefig(f'{point_folder}Plot_Input_Data.png')

 plt.show()

 num_of_points = int(len(df) / 1.10)

 df_subset = df.sample(n=num_of_points, random_state=1)

59

 df_drop = pd.DataFrame(df.drop(df_subset.index).values, columns=['X', 'Y', 'Z'])

 fit_IDW = IDW(df_subset, df_drop, resolution_factor=RES_FACT, reduction_scale=SCALE_FACT)

 # ddff = fit_IDW.execute_method_no_multiprocessing(distance=100, file_name=FILE_NAME,

type_coordinates='UTM',

 # show_prints=True)

 if DO_INTERPOLATE:

 dfs = []

 rprint(' ---------------------- Execute Method ----------------------')

 for NUM_DIST in list_dist:

 rprint(f'Number of Subset points are {len(df_subset)}, '

 f'and the number of Validation points are {len(df_drop)}')

 rprint()

 rprint(' ----- Variables ----- ')

 rprint('File Name: ', FILE_NAME)

 rprint('Resolution Factor: ', RES_FACT)

 rprint('Factor Scale: ', SCALE_FACT)

 rprint('Distance to the firsts: ', NUM_DIST)

 df = fit_IDW.execute_method(distance=NUM_DIST, file_name=FILE_NAME)

 dfs.append(df)

 rprint(dfs)

 if CALCULATE_ERROR:

 rprint(' ---------------------- Calculate Errors ----------------------')

 dic_errors = {

 "IDW Distances": {}

 }

 for NUM_DIST in list_dist:

 rprint('Calculating Errors of Dist', NUM_DIST)

 ddff = fit_IDW.load_last_method(FILE_NAME, dist=NUM_DIST)

 plt.scatter(ddff['X'], ddff['Y'], c=ddff['Z'], cmap='plasma')

 plt.title(f'Output Data NAME_OF_DATASET Radial Distance {NUM_DIST}')

 plt.ylabel('Latitude')

 plt.xlabel('Longitude')

 col_bar = plt.colorbar()

 col_bar.ax.set_ylabel(' Meters ')

 plt.axis('scaled')

plt.savefig(f'{point_folder}Plot_Output_Data_{NAME_OF_DATASET}_Radial_Distance_{NUM_DIST}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 abs_error, rel_error, df_error = fit_IDW.calculate_error(method=ERROR_METHOD,

name_save=f'IDW_Dist_{NUM_DIST}')

 print(f'Error Absolut XYZ {ERROR_METHOD} IDW Dist = {NUM_DIST}: ', abs_error[0],

abs_error[1],

 abs_error[2])

 print(f'Error Relatiu XYZ {ERROR_METHOD} IDW Dist = {NUM_DIST}: ', rel_error[0],

rel_error[1],

 rel_error[2])

 vec_norm_real = np.linalg.norm(df_error['Z_Real'])

 vec_norm_interpolate = np.linalg.norm(df_error['Z_Interp'])

 print('La Norma del Vector Z_Real: ', round(vec_norm_real, 4))

 print('La Norma del Vector Z_Interp: ', round(vec_norm_interpolate, 4))

 print('Diferencia de Normas Real - Interp: ', round((vec_norm_real -

vec_norm_interpolate), 4))

 print('(Norma Real - Norma Interp)/(Norma Real): ',

 round(((vec_norm_real - vec_norm_interpolate)/vec_norm_real), 4))

 print('La Norma(Vector Z Reals - Vector Z Interp: ',

 round((np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 4))

 dic = {

 "Absolute Error": {

 "X": np.round(abs_error[0], 7),

 "Y": np.round(abs_error[1], 7),

 "Z": np.round(abs_error[2], 7),

 },

 "Relative Error": {

 "X": np.round(rel_error[0], 7),

 "Y": np.round(rel_error[1], 7),

 "Z": np.round(rel_error[2], 7)

 },

 "Norma Real": np.round(vec_norm_real, 7),

 "Norma Interp": np.round(vec_norm_interpolate, 7),

 "(Norma Real) - (Interp)": np.round((vec_norm_real - vec_norm_interpolate), 7),

 "(Norma Real - Norma Interp)/(Norma Real)":

60

 np.round(((vec_norm_real - vec_norm_interpolate) / vec_norm_real), 7),

 "Norma(Vector Reals - Vector Interp)":

 np.round((np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 7)

 }

 dic_to_print = {

 "Absolute Error": np.round(abs_error[2], 7),

 "Relative Error": np.round(rel_error[2], 7),

 "Norma(Vector Reals - Vector Interp)": np.round(

 (np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 7)

 }

 dic_errors['IDW Distances'][NUM_DIST] = dic_to_print

 plt_z = ddff.pivot_table(index='X', columns='Y', values='Z').T.values

 X_unique = np.sort(ddff.X.unique())

 Y_unique = np.sort(ddff.Y.unique())

 plt_x, plt_y = np.meshgrid(X_unique, Y_unique)

 rprint(plt_x.shape)

 rprint(plt_y.shape)

 rprint(plt_z.shape)

 if plt_x.shape == plt_y.shape == plt_z.shape:

 try:

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')

 cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(cs, fontsize=8)

 plt.axis('scaled')

 plt.colorbar(ct)

 plt.title(f'IDW Distances {NUM_DIST} Simulate')

 plt.savefig(f'{point_folder}Plot_IDW_Distances_{NUM_DIST}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 except:

 rprint(f'Error in plot: IDW Distances {NUM_DIST} Simulate')

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')

 cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(cs, fontsize=8)

 plt.scatter(df_drop['X'], df_drop['Y'], s=12, c='red')

 plt.axis('scaled')

 plt.colorbar(ct)

 plt.title(f'IDW Distances {NUM_DIST} Simulate vs Validate')

 plt.savefig(f'{point_folder}Plot_IDW_Distances_{NUM_DIST}_simulate_vs_validate.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 # Fig SubPlot Errors

 fig, (ax1, ax2) = plt.subplots(1, 2)

 ct = ax1.contour(plt_x, plt_y, plt_z, colors='k')

 sct = ax1.scatter(df_error['X_Real'], df_error['Y_Real'], s=12,

 c=df_error['Z_Error_Absolute'], cmap='plasma')

 ax1.clabel(ct, fontsize=8)

 ax1.title.set_text('Absolute Error')

 ax1.axis('scaled')

 divider1 = make_axes_locatable(ax1)

 cax1 = divider1.append_axes("right", size="5%", pad=0.1)

 col_bar = plt.colorbar(sct, ax=ax1, cax=cax1)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' meters ')

 ct = ax2.contour(plt_x, plt_y, plt_z, colors='k')

 sct = ax2.scatter(df_error['X_Real'], df_error['Y_Real'], s=12,

 c=df_error['Z_Error_Relative'], cmap='plasma')

 ax2.clabel(ct, fontsize=8)

 ax2.title.set_text('Relative Error')

 ax2.axis('scaled')

 divider2 = make_axes_locatable(ax2)

 cax2 = divider2.append_axes("right", size="5%", pad=0.1)

 col_bar = plt.colorbar(sct, ax=ax2, cax=cax2)

 col_bar.ax.get_yaxis().labelpad = 15

 fig.suptitle(f'Errors Distribution of IDW Distance = {NUM_DIST}', fontsize=16)

 plt.savefig(f'{point_folder}Plot_Errors_Distribution_IDW_Distance_{NUM_DIST}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111, projection='3d')

 X, Y, Z = axes3d.get_test_data(0.05)

 ct3d = ax.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(ct3d, fontsize=9, inline=1)

61

 ax.scatter(df_error['X_Real'], df_error['Y_Real'], df_error['Z_Interp'],

 label='Interpolate Values')

 ax.scatter(df_error['X_Real'], df_error['Y_Real'], df_error['Z_Real'],

 label='Real Values')

 plt.legend(loc="best")

 plt.title(f'3D Compare Real - Interpolate IDW Distance = {NUM_DIST}')

 plt.savefig(f'{point_folder}Plot_Errors_3D_Compare_IDW_Distance_{NUM_DIST}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 rprint(dic_errors)

62

9.2.2 RBF_multiprocessing.py
import pandas as pd

import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1 import make_axes_locatable

from mpl_toolkits.mplot3d import axes3d

from rich import print as rprint

import numpy as np

import os

from tqdm.auto import tqdm

import math

from concurrent import futures

from rich.progress import Progress

import multiprocessing as mp

def cm_to_inch(value):

 return value/2.54

plt.rcParams["figure.figsize"] = [cm_to_inch(40), cm_to_inch(20)]

class RBI:

 point_folder = f'./Points/Subset_NAME_OF_DATASET/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 max_worker = mp.cpu_count() * 2

 @staticmethod

 def _multiprocess_index_handler(index, handler, args):

 """

 This function adds the index to the return of the handler function. Useful to sort the

results of a

 multi-threaded operation

 :param index: index to be returned

 :param handler: function handler to be called

 :param args: list with arguments of the function handler

 :return: tuple with (index, xxx) where xxx is whatever the handler function returned

 """

 result = handler(*args) # call the handler

 return index, result # add index to the result

 def multiprocess(self, arg_list, handler, max_workers=20, text: str = "progress..."):

 """

 Splits a repetitive task into several processes

 :param arg_list: each element in the list will crate a thread and its contents passed to the

handler

 :param handler: function to be invoked by every thread

 :param max_workers: Max processes to be launched at once

 :return: a list with the results (ordered as arg_list)

 :param text: text to be displayed in the progress bar

 """

 index = 0 # thread index

 ctx = mp.get_context('spawn')

 with futures.ProcessPoolExecutor(max_workers=max_workers, mp_context=ctx) as executor:

 processes = [] # empty thread list

 results = [] # empty list of thread results

 for args in arg_list:

 # submit tasks to the executor and append the tasks to the thread list

 processes.append(executor.submit(self._multiprocess_index_handler, index, handler,

args))

 index += 1

 with Progress() as progress: # Use Progress() to show a nice progress bar

 task = progress.add_task(text, total=index)

 for future in futures.as_completed(processes):

 future_result = future.result() # result of the handler

 results.append(future_result)

 progress.update(task, advance=1)

 # sort the results by the index added by __threadify_index_handler

 sorted_results = sorted(results, key=lambda a: a[0])

 final_results = [] # create a new array without indexes

 for result in sorted_results:

 final_results.append(result[1])

 return final_results

 def __init__(self, data_frame, df_validation, resolution_factor=10, reduction_scale=1):

 self.df = pd.DataFrame(data_frame.values, columns=['X', 'Y', 'Z'])

 self.reduction_scale = reduction_scale

 self.df['X'] = self.df['X'] * self.reduction_scale

 self.df['Y'] = self.df['Y'] * self.reduction_scale

63

 self.num_points = len(self.df)

 self.resolution_factor = resolution_factor

 self.df_validation = df_validation

 self.df_validation['X'] = self.df_validation['X'] * self.reduction_scale

 self.df_validation['Y'] = self.df_validation['Y'] * self.reduction_scale

 x_min, x_max = int(np.round(min(self.df['X']))), int(np.round(max(self.df['X'])))

 y_min, y_max = int(np.round(min(self.df['Y']))), int(np.round(max(self.df['Y'])))

 num_resolution = ((x_max - x_min) * self.resolution_factor)

 x = np.linspace(x_min, x_max, num=int(num_resolution))

 y = np.linspace(y_min, y_max, num=int(num_resolution))

 for a in range(0, len(self.df_validation['X'])):

 x = np.append(x, self.df_validation['X'][a])

 y = np.append(y, self.df_validation['Y'][a])

 self.df['X'] = self.df['X'] / self.reduction_scale

 self.df['Y'] = self.df['Y'] / self.reduction_scale

 self.df_validation['X'] = self.df_validation['X'] / self.reduction_scale

 self.df_validation['Y'] = self.df_validation['Y'] / self.reduction_scale

 x = x / self.reduction_scale

 y = y / self.reduction_scale

 rprint(f'Min-Max X: {round(min(x), 2)} - {round(max(x), 4)}')

 rprint(f'Min-Max Y: {round(min(y), 2)} - {round(max(y), 4)}')

 rprint(f'Size X: {x.size} - Size Y: {y.size}')

 self.xx, self.yy = np.meshgrid(x, y)

 self.zz = np.empty(self.xx.shape)

 self.zz[:] = np.nan

 plt.scatter(self.xx, self.yy)

 plt.show()

 def k_ij(self, x_i, y_i, x_j, y_j, equation, beta):

 if equation == 'exp':

 return math.exp(-(beta * np.linalg.norm(math.dist((x_i, y_i), (x_j, y_j)))) ** 2)

 if equation == 'multi_sqrt':

 if math.dist((x_i, y_i), (x_j, y_j)) != np.linalg.norm(math.dist((x_i, y_i), (x_j,

y_j))):

 print(math.dist((x_i, y_i), (x_j, y_j)), '---', np.linalg.norm(math.dist((x_i, y_i),

(x_j, y_j))))

 return np.sqrt(1 + ((beta * math.dist((x_i, y_i), (x_j, y_j))) ** 2))

 def calculate_k_matrix(self, points, beta, kernel_function):

 k_matrix = []

 z_vector = []

 for i in range(0, len(points['X'])):

 k_vector = []

 z_vector.append([points['Z'][i]])

 t_sum = 0

 for j in range(0, len(points['X'])):

 k_vector.append(self.k_ij(points['X'][i], points['Y'][i], points['X'][j],

points['Y'][j],

 beta=beta, equation=kernel_function))

 k_matrix.append(k_vector)

 return np.matrix(k_matrix), np.matrix(z_vector), np.linalg.solve(np.matrix(k_matrix),

np.matrix(z_vector))

 def execute_method_no_multiprocessing(self, beta, kernel_function, file_name):

 rprint(f'Execute Radial Basis Function Interpolation with Beta = {beta}')

 M_k, V_z, V_w = self.calculate_k_matrix(self.df, beta=beta, kernel_function=kernel_function)

 rprint(f'Process of RBF method with Beta = {beta} ...')

 for i in tqdm(range(0, self.zz.shape[0])):

 for j in range(0, self.zz.shape[1]):

 sum_wk = [V_w[a] * self.k_ij(self.xx[i, j], self.yy[i, j], self.df['X'][a],

self.df['Y'][a],

 beta=beta, equation=kernel_function)

 for a in range(0, len(self.df['X']))]

 self.zz[i, j] = sum(sum_wk)

 rprint('Interpolation Finish.\nTransform Mesh into DataFrame')

 list_p = []

 for a in range(0, self.zz.shape[0]):

 for b in range(0, self.zz.shape[1]):

 P = [self.xx[a, b], self.yy[a, b], self.zz[a, b]]

 list_p.append(P)

64

 self.df_new = pd.DataFrame(list_p, columns=['X', 'Y', 'Z'])

 self.save_method(file_name, beta=beta)

 rprint(f'Finish Beta = {beta}')

 return self.df_new

 def execute_method(self, beta, kernel_function, file_name, show_prints=False):

 rprint(f'Execute Radial Basis Function Interpolation with Beta = {beta}')

 self.M_k, self.V_z, self.V_w = self.calculate_k_matrix(self.df, beta=beta,

kernel_function=kernel_function)

 argument_list = []

 list = np.arange(0, self.max_worker + 1)

 index = 1

 for i in list:

 if i != list[-1]:

 print(i)

 inici = int(self.zz.shape[0] / self.max_worker) * (index - 1)

 final = int(self.zz.shape[0] / self.max_worker) * index

 print(inici, final, '\n')

 index += 1

 else:

 print(i)

 inici = int(self.zz.shape[0] / self.max_worker) * self.max_worker

 final = self.zz.shape[0]

 print(inici, final, '\n')

 myargs = [beta, kernel_function, file_name, inici, final]

 argument_list.append(myargs)

 if show_prints:

 rprint(argument_list)

 rprint(f'Multiprocessing of RBF method with Beta = {beta} ...')

 results = self.multiprocess(argument_list, self.execute_method_multiprocessing,

max_workers=self.max_worker)

 if show_prints:

 rprint(results)

 list_res = []

 for result in results:

 list_res += result

 if show_prints:

 rprint(list_res, len(list_res))

 zz = np.array(list_res).reshape(self.zz.shape[1], self.zz.shape[0])

 rprint('Interpolation Finish.\nTransform Mesh into DataFrame')

 list_p = []

 for a in range(0, self.zz.shape[0]):

 for b in range(0, self.zz.shape[1]):

 P = [self.xx[a, b], self.yy[a, b], zz[a, b]]

 list_p.append(P)

 self.df_new = pd.DataFrame(list_p, columns=['X', 'Y', 'Z'])

 self.save_method(file_name, beta=beta)

 rprint(f'Finish Beta = {beta}')

 return self.df_new

 def execute_method_multiprocessing(self, beta, kernel_function, file_name, start, end,

show_prints=False):

 rprint(f'[green]Start Multiprocessing Interpolation with Beta {beta} --> {start} - {end} --

{self.zz.shape[0]}')

 list_results = []

 for i in tqdm(range(start, end)):

 for j in range(0, self.zz.shape[1]):

 if show_prints:

 print(i, j)

 sum_wk = [self.V_w[a] * self.k_ij(self.xx[i, j], self.yy[i, j], self.df['X'][a],

self.df['Y'][a],

 beta=beta, equation=kernel_function)

 for a in range(0, len(self.df['X']))]

 list_results.append(sum(sum_wk))

 rprint(f'[yellow]Finish Multiprocessing Interpolation with Beta {beta} --> {start} - {end} --

{self.zz.shape[0]}')

 return list_results

65

 def save_method(self, name, beta):

self.df_new.to_csv(f'{self.point_folder}RBI_optim_method_{name}_Beta_{beta}_{self.num_points}_points.

csv',

 index=False, header=False)

 def load_last_method(self, name, beta):

 self.df_new = pd.read_csv(

 f'{self.point_folder}RBI_optim_method_{name}_Beta_{beta}_{self.num_points}_points.csv',

 header=None)

 self.df_new.columns = ['X', 'Y', 'Z']

 return self.df_new

 def calculate_error(self, name_save, method='MSE', show_plot=False):

 def find_nearest(df_predict, value_x, value_y, value_z, min_z_validate):

 if value_z == 0:

 value_z = 0.00001

 df_predict_x_array = df_predict.X.to_numpy()

 df_predict_y_array = df_predict.Y.to_numpy()

 idx_x = (min(np.abs(df_predict_x_array - value_x)))

 idx_y = (min(np.abs(df_predict_y_array - value_y)))

 for x_val in df_predict_x_array:

 if np.abs(x_val - value_x) == idx_x:

 x = x_val

 for y_val in df_predict_y_array:

 if np.abs(y_val - value_y) == idx_y:

 y = y_val

 df_aprox = df_predict[(df_predict['X'] == x) & (df_predict['Y'] == y)]

 array_aprox = df_aprox.to_numpy()

 escal_z = abs(min_z_validate) * 1.2

 val_z_escal = (value_z + escal_z)

 int_z_escal = (array_aprox[0][2] + escal_z)

 e_a_z_escal = abs(val_z_escal - int_z_escal)

 e_r_z_escal = (e_a_z_escal / abs(val_z_escal)) * 100

 lst = [value_x, value_y, value_z,

 array_aprox[0][0], array_aprox[0][1], array_aprox[0][2],

 abs(value_x - array_aprox[0][0]), abs(value_y - array_aprox[0][1]), e_a_z_escal,

 ((abs(value_x - array_aprox[0][0])/abs(value_x))*100),

 ((abs(value_y - array_aprox[0][1])/abs(value_y))*100),

 e_r_z_escal,

 [value_z, array_aprox[0][2], (abs(value_z - array_aprox[0][2])),

 ((abs(value_z - array_aprox[0][2])/abs(value_z))*100)]]

 return lst

 comparative = []

 for i in tqdm(range(0, len(self.df_validation.values))):

 comparative.append(find_nearest(self.df_new, self.df_validation.X[i],

self.df_validation.Y[i],

 self.df_validation.Z[i],

min_z_validate=min(self.df_validation.Z)))

 df_comparative = pd.DataFrame(comparative,

 columns=['X_Real', 'Y_Real', 'Z_Real',

 'X_Interp', 'Y_Interp', 'Z_Interp',

 'X_Error_Absolute', 'Y_Error_Absolute',

'Z_Error_Absolute',

 'X_Error_Relative', 'Y_Error_Relative',

'Z_Error_Relative',

 'List_Real_Zs'])

df_comparative.to_csv(f'{self.point_folder}df_comparative_{name_save}_{self.num_points}_points.csv',

 index=False)

 sct = plt.scatter(df_comparative['X_Real'], df_comparative['Y_Real'], s=12,

 c=df_comparative['Z_Error_Absolute'], cmap='plasma')

 plt.axis('scaled')

 plt.colorbar(sct)

 plt.title(f'{name_save} Absolute Error')

 plt.savefig(f'{self.point_folder}Plot_Error_Absolute_{method}_{name_save}.png')

 if show_plot:

 plt.show()

 plt.close()

 sct = plt.scatter(df_comparative['X_Real'], df_comparative['Y_Real'], s=12,

 c=df_comparative['Z_Error_Relative'], cmap='plasma')

 plt.axis('scaled')

66

 col_bar = plt.colorbar(sct)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' % ', rotation=270)

 plt.title(f'{name_save} Relative Error')

 plt.savefig(f'{self.point_folder}Plot_Error_Relative_{method}_{name_save}.png')

 if show_plot:

 plt.show()

 plt.close()

 if method == 'MSE':

 ''' 1/n * sum((y - y')**2) '''

 e_abs_x = 0

 e_abs_y = 0

 e_abs_z = 0

 e_rel_x = 0

 e_rel_y = 0

 e_rel_z = 0

 for i in tqdm(range(0, len(df_comparative))):

 # print(df_comparative.X_Dist[i], df_comparative.Y_Dist[i], df_comparative.Z_Dist[i])

 e_abs_x += df_comparative.X_Error_Absolute[i] ** 2

 e_abs_y += df_comparative.Y_Error_Absolute[i] ** 2

 e_abs_z += df_comparative.Z_Error_Absolute[i] ** 2

 e_rel_x += df_comparative.X_Error_Relative[i] ** 2

 e_rel_y += df_comparative.Y_Error_Relative[i] ** 2

 e_rel_z += df_comparative.Z_Error_Relative[i] ** 2

 return ((e_abs_x / len(df_comparative)), (e_abs_y / len(df_comparative)), (e_abs_z /

len(df_comparative))),\

 ((e_rel_x / len(df_comparative)), (e_rel_y / len(df_comparative)),

 (e_rel_z / len(df_comparative))), df_comparative

 if method == 'RMSE':

 ''' sqrt(1/n * sum((y - y')**2)) '''

 e_abs_x = 0

 e_abs_y = 0

 e_abs_z = 0

 e_rel_x = 0

 e_rel_y = 0

 e_rel_z = 0

 for i in tqdm(range(0, len(df_comparative))):

 # print(df_comparative.X_Dist[i], df_comparative.Y_Dist[i], df_comparative.Z_Dist[i])

 e_abs_x += df_comparative.X_Error_Absolute[i] ** 2

 e_abs_y += df_comparative.Y_Error_Absolute[i] ** 2

 e_abs_z += df_comparative.Z_Error_Absolute[i] ** 2

 e_rel_x += df_comparative.X_Error_Relative[i] ** 2

 e_rel_y += df_comparative.Y_Error_Relative[i] ** 2

 e_rel_z += df_comparative.Z_Error_Relative[i] ** 2

 return ((math.sqrt(e_abs_x / len(df_comparative))), (math.sqrt(e_abs_y /

len(df_comparative))),

 (math.sqrt(e_abs_z / len(df_comparative)))), \

 ((math.sqrt(e_rel_x / len(df_comparative))), (math.sqrt(e_rel_y /

len(df_comparative))),

 (math.sqrt(e_rel_z / len(df_comparative)))), df_comparative

if __name__ == "__main__":

 point_folder = f'./Points/Subset_NAME_OF_DATASET/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 point_folder_dataset = f'./Points/'

 if not os.path.exists(point_folder_dataset):

 os.mkdir(point_folder_dataset)

 else:

 pass

 FILE_NAME = 'NAME_OF_DATASET'

 RES_FACT = 1

 SCALE_FACT = 1

 list_beta = [0.10, 0.25, 0.50, 0.75, 1.00, 2.50, 5.00, 10.0, 25.0, 50.0, 75.0]

 ERROR_METHOD = 'RMSE'

 KERNEL_FUNC = 'multi_sqrt'

 DO_INTERPOLATE = True

 CALCULATE_ERROR = True

 SHOW_PLOTS = False

 df = pd.read_csv(f'{point_folder_dataset}{FILE_NAME}.csv', sep=';')

 rprint(df)

67

 plt.scatter(df['X'], df['Y'], c=df['Z'], cmap='plasma')

 plt.title('Input Data NAME_OF_DATASET')

 plt.ylabel('Latitude')

 plt.xlabel('Longitude')

 col_bar = plt.colorbar()

 col_bar.ax.set_ylabel(' Meters ')

 plt.axis('scaled')

 plt.savefig(f'{point_folder}Plot_Input_Data.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 num_of_points = int(len(df) / 1.10)

 df_subset = df.sample(n=num_of_points, random_state=1)

 df_drop = pd.DataFrame(df.drop(df_subset.index).values, columns=['X', 'Y', 'Z'])

 fit_RBI = RBI(df_subset, df_drop, resolution_factor=RES_FACT, reduction_scale=SCALE_FACT)

 # ddff = fit_RBI.execute_method(beta=BETA, file_name=FILE_NAME)

 if DO_INTERPOLATE:

 dfs = []

 rprint(' ---------------------- Execute Method ----------------------')

 for BETA in list_beta:

 rprint(f'Number of Subset points are {len(df_subset)}, '

 f'and the number of Validation points are {len(df_drop)}')

 rprint()

 rprint(' ----- Variables ----- ')

 rprint('File Name: ', FILE_NAME)

 rprint('Resolution Factor: ', RES_FACT)

 rprint('Factor Scale: ', SCALE_FACT)

 rprint('Constant Beta: ', BETA)

 df = fit_RBI.execute_method(beta=BETA, kernel_function=KERNEL_FUNC, file_name=FILE_NAME)

 dfs.append(df)

 rprint(dfs)

 if CALCULATE_ERROR:

 rprint(' ---------------------- Calculate Errors ----------------------')

 dic_errors = {

 "RBF Beta": {}

 }

 for BETA in list_beta:

 rprint('Calculating Errors of Beta', BETA)

 ddff = fit_RBI.load_last_method(FILE_NAME, beta=BETA)

 plt.scatter(ddff['X'], ddff['Y'], c=ddff['Z'], cmap='plasma')

 plt.title(f'Output Data NAME_OF_DATASET Beta {BETA}')

 plt.ylabel('Latitude')

 plt.xlabel('Longitude')

 col_bar = plt.colorbar()

 col_bar.ax.set_ylabel(' Meters ')

 plt.axis('scaled')

 plt.savefig(f'{point_folder}Plot_Output_Data_{NAME_OF_DATASET}_Beta_{BETA}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 abs_error, rel_error, df_error = fit_RBI.calculate_error(method=ERROR_METHOD,

name_save=f'RBF_Beta_{BETA}')

 print(f'Error Absolut XYZ {ERROR_METHOD} RBF Beta = {BETA}: ', abs_error[0],

abs_error[1],

 abs_error[2])

 print(f'Error Relatiu XYZ {ERROR_METHOD} RBF Beta = {BETA}: ', rel_error[0],

rel_error[1],

 rel_error[2])

 vec_norm_real = np.linalg.norm(df_error['Z_Real'])

 vec_norm_interpolate = np.linalg.norm(df_error['Z_Interp'])

 print('La Norma del Vector Z_Real: ', round(vec_norm_real, 4))

 print('La Norma del Vector Z_Interp: ', round(vec_norm_interpolate, 4))

 print('Diferencia de Normas Real - Interp: ', round((vec_norm_real -

vec_norm_interpolate), 4))

 print('(Norma Real - Norma Interp)/(Norma Real): ',

 round(((vec_norm_real - vec_norm_interpolate)/vec_norm_real), 4))

 dic = {

 "Absolute Error": {

 "X": np.round(abs_error[0], 7),

 "Y": np.round(abs_error[1], 7),

 "Z": np.round(abs_error[2], 7),

 },

68

 "Relative Error": {

 "X": np.round(rel_error[0], 7),

 "Y": np.round(rel_error[1], 7),

 "Z": np.round(rel_error[2], 7)

 },

 "Norma Real": np.round(vec_norm_real, 7),

 "Norma Interp": np.round(vec_norm_interpolate, 7),

 "(Norma Real) - (Interp)": np.round((vec_norm_real - vec_norm_interpolate), 7),

 "(Norma Real - Norma Interp)/(Norma Real)": np.round(

 ((vec_norm_real - vec_norm_interpolate) / vec_norm_real), 7),

 "Norma(Vector Reals - Vector Interp)": np.round(

 (np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 7)

 }

 dic_to_print = {

 "Absolute Error": np.round(abs_error[2], 7),

 "Relative Error": np.round(rel_error[2], 7),

 "Norma(Vector Reals - Vector Interp)": np.round(

 (np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 7)

 }

 # rprint(dic)

 dic_errors["RBF Beta"][BETA] = dic_to_print

 # rprint(dic_errors)

 plt_z = ddff.pivot_table(index='X', columns='Y', values='Z').T.values

 X_unique = np.sort(ddff.X.unique())

 Y_unique = np.sort(ddff.Y.unique())

 plt_x, plt_y = np.meshgrid(X_unique, Y_unique)

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')

 cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(cs, fontsize=8)

 plt.axis('scaled')

 plt.colorbar(ct)

 plt.title(f'RBF Beta {BETA} Simulate')

 plt.savefig(f'{point_folder}Plot_RBF_Beta_{BETA}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')

 cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(cs, fontsize=8)

 plt.scatter(df_drop['X'], df_drop['Y'], s=12, c='red')

 plt.axis('scaled')

 plt.colorbar(ct)

 plt.title(f'RBF Beta {BETA} Simulate vs Validate')

 plt.savefig(f'{point_folder}Plot_RBF_Beta_{BETA}_simulate_vs_validate.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 # Fig SubPlot Errors

 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(cm_to_inch(40), cm_to_inch(20)))

 ct = ax1.contour(plt_x, plt_y, plt_z, colors='k')

 sct = ax1.scatter(df_error['X_Real'], df_error['Y_Real'], s=12,

 c=df_error['Z_Error_Absolute'], cmap='plasma') # 'jet') # 'YlOrRd')

 ax1.clabel(ct, fontsize=8)

 ax1.title.set_text('Absolute Error')

 ax1.axis('scaled')

 divider1 = make_axes_locatable(ax1)

 cax1 = divider1.append_axes("right", size="5%", pad=0.1)

 col_bar = plt.colorbar(sct, ax=ax1, cax=cax1) # shrink=0.8)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' meters ')

 ct = ax2.contour(plt_x, plt_y, plt_z, colors='k')

 sct = ax2.scatter(df_error['X_Real'], df_error['Y_Real'], s=12,

 c=df_error['Z_Error_Relative'], cmap='plasma') # 'jet') # 'YlOrRd')

 ax2.clabel(ct, fontsize=8)

 ax2.title.set_text('Relative Error')

 ax2.axis('scaled')

 divider2 = make_axes_locatable(ax2)

 cax2 = divider2.append_axes("right", size="5%", pad=0.1)

 col_bar = plt.colorbar(sct, ax=ax2, cax=cax2) # shrink=0.8)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' % ', rotation=270)

 fig.suptitle(f'Errors Distribution of RBF Beta = {BETA}', fontsize=16)

 plt.savefig(f'{point_folder}Plot_Errors_Distribution_RBF_Beta_{BETA}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 fig = plt.figure()

69

 ax = fig.add_subplot(111, projection='3d')

 X, Y, Z = axes3d.get_test_data(0.05)

 ct3d = ax.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(ct3d, fontsize=9, inline=1)

 ax.scatter(df_error['X_Real'], df_error['Y_Real'], df_error['Z_Interp'],

 label='Interpolate Values')

 ax.scatter(df_error['X_Real'], df_error['Y_Real'], df_error['Z_Real'],

 label='Real Values')

 plt.legend(loc="best")

 plt.title(f'3D Compare Real - Interpolate RBF Beta = {BETA}')

 plt.savefig(f'{point_folder}Plot_Errors_3D_Compare_RBF_Beta_{BETA}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 rprint(dic_errors)

70

9.2.3 Kriging_multiprocessing.py
import pandas as pd

import matplotlib.pyplot as plt

from mpl_toolkits.axes_grid1 import make_axes_locatable

from mpl_toolkits.mplot3d import axes3d

from rich import print as rprint

import numpy as np

import skgstat as skg

import os

from tqdm.auto import tqdm

import math

def cm_to_inch(value):

 return value/2.54

plt.rcParams["figure.figsize"] = [cm_to_inch(40), cm_to_inch(20)]

class Kriging:

 point_folder = f'./Points/Subset_NAME_OF_DATASET/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 def __init__(self, data_frame, df_validation, resolution_factor=50, reduction_scale=1):

 self.points = data_frame

 self.reduction_scale = reduction_scale

 self.df_validation = df_validation

 self.num_points = len(self.points)

 self.resolution_factor = resolution_factor

 self.df_validation.to_csv(f'{self.point_folder}df_validation_{self.num_points}_points.csv',

 index=False, header=False)

 self.points.to_csv(f'{self.point_folder}df_points_{self.num_points}_points.csv',

 index=False, header=False)

 self.V_df = skg.Variogram(self.points[['X', 'Y']].values,

 self.points.Z.values, maxlag='median', normalize=False)

 def semivariogram_plot(self, show_plot=True):

 fig, (ax_1, ax_2, ax_3) = plt.subplots(1, 3, figsize=(15, 5), sharey=True, sharex=True)

 x = np.linspace(0, self.V_df.maxlag, 100)

 manual_lags = (6, 12, 18)

 # plot each variogram

 self.V_df.bin_func = 'even'

 self.V_df.n_lags = 10

 ax_1.plot(self.V_df.bins, self.V_df.experimental, '.b')

 ax_1.grid(which='major', axis='x')

 ax_1.set_title('10 lags')

 self.V_df.n_lags = 20

 ax_2.plot(self.V_df.bins, self.V_df.experimental, '.b')

 ax_2.grid(which='major', axis='x')

 ax_2.set_title('20 lags')

 self.V_df.bin_func = 'scott'

 ax_3.set_xlabel('Lag (-)')

 ax_3.plot(self.V_df.bins, self.V_df.experimental, '.b')

 ax_3.grid(which='major', axis='x')

 ax_3.set_title('Scott rule lags')

 plt.tight_layout()

 plt.savefig(f'{self.point_folder}Plot_Kriging_SemiVariogramas_1.png')

 if show_plot:

 plt.show()

 plt.close()

 def semivariogram_plot_errors(self, show_plot=True):

 self.V_df.bin_func = 'scott'

 fig, _a = plt.subplots(2, 3, sharex=False, sharey=False)

 axes = _a.flatten()

 for i, model in enumerate(('spherical', 'exponential', 'gaussian', 'matern', 'stable',

'cubic')):

 self.V_df.model = model

 self.V_df.plot(axes=axes[i], hist=False, show=False, grid=False)

 axes[i].set_title('Model: %s; RMSE: %.2f' % (model, self.V_df.rmse))

 axes[i].set_ylim(0, max(self.V_df.experimental))

 plt.savefig(f'{self.point_folder}Plot_Kriging_SemiVariogramas.png')

 if show_plot:

 plt.show()

71

 plt.close()

 def interpolate_df(self, V, ax, df):

 self.points['X'] = self.points['X'] * self.reduction_scale

 self.points['Y'] = self.points['Y'] * self.reduction_scale

 self.df_validation['X'] = self.df_validation['X'] * self.reduction_scale

 self.df_validation['Y'] = self.df_validation['Y'] * self.reduction_scale

 x_min, x_max = int(np.round(min(df['X']))), int(np.round(max(df['X'])))

 y_min, y_max = int(np.round(min(df['Y']))), int(np.round(max(df['Y'])))

 num_resolution = ((x_max - x_min) * self.resolution_factor)

 x = np.linspace(x_min, x_max, num=int(num_resolution))

 y = np.linspace(y_min, y_max, num=int(num_resolution))

 for a in range(0, len(self.df_validation['X'])):

 x = np.append(x, self.df_validation['X'][a])

 y = np.append(y, self.df_validation['Y'][a])

 self.points['X'] = self.points['X'] / self.reduction_scale

 self.points['Y'] = self.points['Y'] / self.reduction_scale

 self.df_validation['X'] = self.df_validation['X'] / self.reduction_scale

 self.df_validation['Y'] = self.df_validation['Y'] / self.reduction_scale

 x = x / self.reduction_scale

 y = y / self.reduction_scale

 rprint(f'Min-Max X: {round(min(x), 2)} - {round(max(x), 4)}')

 rprint(f'Min-Max Y: {round(min(y), 2)} - {round(max(y), 4)}')

 rprint(f'Size X: {x.size} - Size Y: {y.size}')

 xx, yy = np.meshgrid(x, y)

 zz = np.empty(xx.shape)

 zz[:] = np.nan

 ok = skg.OrdinaryKriging(V, min_points=3, max_points=15, mode='exact')

 zz = ok.transform(xx.flatten(), yy.flatten()).reshape(xx.shape)

 art = ax.matshow(zz, origin='lower', cmap='plasma', vmin=V.values.min(), vmax=V.values.max())

 ax.set_title('%s model' % V.model.__name__)

 plt.colorbar(art, ax=ax)

 # plt.show()

 return xx, yy, zz

 def execute_method(self):

 self.fields = []

 fig, _a = plt.subplots(2, 3, figsize=(12, 10), sharex=True, sharey=True)

 axes = _a.flatten()

 for i, model in tqdm(enumerate(('spherical', 'exponential', 'gaussian', 'matern', 'stable',

'cubic'))):

 self.V_df.model = model

 self.xx, self.yy, zz = self.interpolate_df(self.V_df, axes[i], self.points)

 self.fields.append(zz)

 plt.show()

 self.df_fields = pd.DataFrame(

 {'spherical': self.fields[0].flatten(), 'exponential': self.fields[1].flatten(),

 'gaussian': self.fields[2].flatten(), 'matern': self.fields[3].flatten(),

 'stable': self.fields[4].flatten(), 'cubic': self.fields[5].flatten()}).describe()

 rprint(self.df_fields)

 self.df_fields.to_csv(f'{self.point_folder}df_fields_{self.num_points}_points.csv',

 index=True, header=True)

 return self.df_fields

 def save_method(self, name):

 for i, model in enumerate(('spherical', 'exponential', 'gaussian', 'matern', 'stable',

'cubic')):

 zz = self.fields[i]

 list_p = []

 for a in range(0, zz.shape[0]):

 for b in range(0, zz.shape[1]):

 P = [self.xx[a, b], self.yy[a, b], zz[a, b]]

 list_p.append(P)

 df_save = pd.DataFrame(list_p)

 df_save.columns = ['X', 'Y', 'Z']

 df_save.to_csv(f'{self.point_folder}kriging_{model}_{name}_{self.num_points}_points.csv',

 index=False, header=False)

72

 def load_last_method(self, model, name):

 df_load =

pd.read_csv(f'{self.point_folder}kriging_{model}_{name}_{self.num_points}_points.csv', header=None)

 df_load.columns = ['X', 'Y', 'Z']

 return df_load

 def calculate_error(self, df_model, name_save, method='MSE', show_plot=False):

 def find_nearest(df_predict, value_x, value_y, value_z, min_z_validate):

 global x, y

 df_predict_x_array = df_predict.X.to_numpy()

 df_predict_y_array = df_predict.Y.to_numpy()

 idx_x = (min(np.abs(df_predict_x_array - value_x)))

 idx_y = (min(np.abs(df_predict_y_array - value_y)))

 for i in df_predict_x_array:

 if np.abs(i - value_x) == idx_x:

 x = i

 for i in df_predict_y_array:

 if np.abs(i - value_y) == idx_y:

 y = i

 df_aprox = df_predict[(df_predict['X'] == x) & (df_predict['Y'] == y)]

 array_aprox = df_aprox.to_numpy()

 escal_z = abs(min_z_validate)*1.2

 val_z_escal = (value_z + escal_z)

 int_z_escal = (array_aprox[0][2] + escal_z)

 e_a_z_escal = abs(val_z_escal - int_z_escal)

 e_r_z_escal = (e_a_z_escal/abs(val_z_escal))*100

 lst = [value_x, value_y, value_z,

 array_aprox[0][0], array_aprox[0][1], array_aprox[0][2],

 abs(value_x - array_aprox[0][0]), abs(value_y - array_aprox[0][1]), e_a_z_escal,

 ((abs(value_x - array_aprox[0][0])/abs(value_x))*100),

 ((abs(value_y - array_aprox[0][1])/abs(value_y))*100),

 e_r_z_escal,

 [value_z, array_aprox[0][2], (abs(value_z - array_aprox[0][2])),

 ((abs(value_z - array_aprox[0][2])/abs(value_z))*100)]]

 return lst

 comparative = []

 for i in tqdm(range(0, len(self.df_validation.values))):

 comparative.append(find_nearest(df_model, self.df_validation.X[i],

self.df_validation.Y[i],

 self.df_validation.Z[i],

min_z_validate=min(self.df_validation.Z)))

 df_comparative = pd.DataFrame(comparative,

 columns=['X_Real', 'Y_Real', 'Z_Real',

 'X_Interp', 'Y_Interp', 'Z_Interp',

 'X_Error_Absolute', 'Y_Error_Absolute',

'Z_Error_Absolute',

 'X_Error_Relative', 'Y_Error_Relative',

'Z_Error_Relative',

 'List_Real_Zs'])

df_comparative.to_csv(f'{self.point_folder}df_comparative_{name_save}_{self.num_points}_points.csv',

 index=False)

 sct = plt.scatter(df_comparative['X_Real'], df_comparative['Y_Real'], s=12,

 c=df_comparative['Z_Error_Absolute'], cmap='plasma')

 plt.axis('scaled')

 col_bar = plt.colorbar(sct)

 plt.title(f'{name_save} Absolute Error')

 plt.savefig(f'{self.point_folder}Plot_Error_Absolute_{method}_{name_save}.png')

 if show_plot:

 plt.show()

 plt.close()

 sct = plt.scatter(df_comparative['X_Real'], df_comparative['Y_Real'], s=12,

 c=df_comparative['Z_Error_Relative'], cmap='plasma')

 plt.axis('scaled')

 col_bar = plt.colorbar(sct)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' % ', rotation=270)

 plt.title(f'{name_save} Relative Error')

 plt.savefig(f'{self.point_folder}Plot_Error_Relative_{method}_{name_save}.png')

 if show_plot:

 plt.show()

 plt.close()

 if method == 'MSE':

 ''' 1/n * sum((y - y')**2) '''

73

 e_abs_x = 0

 e_abs_y = 0

 e_abs_z = 0

 e_rel_x = 0

 e_rel_y = 0

 e_rel_z = 0

 for i in tqdm(range(0, len(df_comparative))):

 # print(df_comparative.X_Dist[i], df_comparative.Y_Dist[i], df_comparative.Z_Dist[i])

 e_abs_x += df_comparative.X_Error_Absolute[i] ** 2

 e_abs_y += df_comparative.Y_Error_Absolute[i] ** 2

 e_abs_z += df_comparative.Z_Error_Absolute[i] ** 2

 e_rel_x += df_comparative.X_Error_Relative[i] ** 2

 e_rel_y += df_comparative.Y_Error_Relative[i] ** 2

 e_rel_z += df_comparative.Z_Error_Relative[i] ** 2

 return ((e_abs_x / len(df_comparative)), (e_abs_y / len(df_comparative)), (e_abs_z /

len(df_comparative))), \

 ((e_rel_x / len(df_comparative)), (e_rel_y / len(df_comparative)),

 (e_rel_z / len(df_comparative))), df_comparative

 if method == 'RMSE':

 ''' sqrt(1/n * sum((y - y')**2)) '''

 e_abs_x = 0

 e_abs_y = 0

 e_abs_z = 0

 e_rel_x = 0

 e_rel_y = 0

 e_rel_z = 0

 for i in tqdm(range(0, len(df_comparative))):

 # print(df_comparative.X_Dist[i], df_comparative.Y_Dist[i], df_comparative.Z_Dist[i])

 e_abs_x += df_comparative.X_Error_Absolute[i] ** 2

 e_abs_y += df_comparative.Y_Error_Absolute[i] ** 2

 e_abs_z += df_comparative.Z_Error_Absolute[i] ** 2

 e_rel_x += df_comparative.X_Error_Relative[i] ** 2

 e_rel_y += df_comparative.Y_Error_Relative[i] ** 2

 e_rel_z += df_comparative.Z_Error_Relative[i] ** 2

 return ((math.sqrt(e_abs_x / len(df_comparative))), (math.sqrt(e_abs_y /

len(df_comparative))),

 (math.sqrt(e_abs_z / len(df_comparative)))), \

 ((math.sqrt(e_rel_x / len(df_comparative))), (math.sqrt(e_rel_y /

len(df_comparative))),

 (math.sqrt(e_rel_z / len(df_comparative)))), \

 df_comparative

if __name__ == "__main__":

 point_folder = f'./Points/Subset_NAME_OF_DATASET/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 point_folder_dataset = f'./Points/'

 if not os.path.exists(point_folder_dataset):

 os.mkdir(point_folder_dataset)

 else:

 pass

 FILE_NAME = 'NAME_OF_DATASET'

 RES_FACT = 1

 SCALE_FACT = 1

 ERROR_METHOD = 'RMSE'

 DO_INTERPOLATE = True

 CALCULATE_ERROR = True

 SHOW_PLOTS = False

 df = pd.read_csv(f'{point_folder_dataset}{FILE_NAME}.csv', sep=';')

 print(len(df))

 plt.scatter(df['X'], df['Y'], c=df['Z'], cmap='plasma')

 plt.title('Input Data NAME_OF_DATASET')

 plt.ylabel('Latitude')

 plt.xlabel('Longitude')

 col_bar = plt.colorbar()

 col_bar.ax.set_ylabel(' Meters ')

 plt.axis('scaled')

 plt.savefig(f'{point_folder}Plot_Input_Data.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

74

 num_of_points = int(len(df) / 1.10)

 df_subset = df.sample(n=num_of_points, random_state=1)

 df_drop = pd.DataFrame(df.drop(df_subset.index).values, columns=['X', 'Y', 'Z'])

 krig_fit = Kriging(df_subset, df_drop, resolution_factor=RES_FACT, reduction_scale=SCALE_FACT)

 krig_fit.semivariogram_plot()

 krig_fit.semivariogram_plot_errors()

 if DO_INTERPOLATE:

 dfs = []

 rprint(' ---------------------- Execute Method ----------------------')

 rprint(f'Number of Subset points are {len(df_subset)}, '

 f'and the number of Validation points are {len(df_drop)}')

 rprint(' ----- Variables ----- ')

 rprint('File Name: ', FILE_NAME)

 rprint('Resolution Factor: ', RES_FACT)

 rprint('Factor Scale: ', SCALE_FACT)

 dfs = krig_fit.execute_method()

 krig_fit.save_method(FILE_NAME)

 if CALCULATE_ERROR:

 rprint(' ---------------------- Calculate Errors ----------------------')

 dic_errors = {

 "Kriging Method": {}

 }

 for i, CONCRETE_MODEL in enumerate(('spherical', 'exponential', 'gaussian', 'matern',

'stable', 'cubic')):

 print(i, CONCRETE_MODEL.capitalize())

 rprint(f'Open {CONCRETE_MODEL.capitalize()} Model')

 ddff = krig_fit.load_last_method(CONCRETE_MODEL, FILE_NAME)

 plt.scatter(ddff['X'], ddff['Y'], c=ddff['Z'], cmap='plasma')

 plt.title(f'Output Data NAME_OF_DATASET Kriging {CONCRETE_MODEL.capitalize()}')

 plt.ylabel('Latitude')

 plt.xlabel('Longitude')

 col_bar = plt.colorbar()

 col_bar.ax.set_ylabel(' Meters ')

 plt.axis('scaled')

plt.savefig(f'{point_folder}Plot_Output_Data_{NAME_OF_DATASET}_Kriging_{CONCRETE_MODEL.capitalize()}.

png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 abs_error, rel_error, df_error = krig_fit.calculate_error(ddff, method=ERROR_METHOD,

name_save=f'Kriging_{CONCRETE_MODEL.capitalize()}')

 print(f'Error Absolut XYZ {ERROR_METHOD} Kriging {CONCRETE_MODEL.capitalize()}: ',

abs_error[0], abs_error[1], abs_error[2])

 print(f'Error Relatiu XYZ {ERROR_METHOD} Kriging {CONCRETE_MODEL.capitalize()}: ',

rel_error[0], rel_error[1], rel_error[2])

 vec_norm_real = np.linalg.norm(df_error['Z_Real'])

 vec_norm_interpolate = np.linalg.norm(df_error['Z_Interp'])

 print('La Norma del Vector Z_Real: ', round(vec_norm_real, 4))

 print('La Norma del Vector Z_Interp: ', round(vec_norm_interpolate, 4))

 print('Diferencia de Normas Real - Interp: ', round((vec_norm_real -

vec_norm_interpolate), 4))

 print('(Norma Real - Norma Interp)/(Norma Real): ',

 round(((vec_norm_real - vec_norm_interpolate) / vec_norm_real), 4))

 print('La Norma(Vector Z Reals - Vector Z Interp: ',

 round((np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 4))

 dic = {

 "Absolute Error": {

 "X": np.round(abs_error[0], 7),

 "Y": np.round(abs_error[1], 7),

 "Z": np.round(abs_error[2], 7),

 },

 "Relative Error": {

 "X": np.round(rel_error[0], 7),

 "Y": np.round(rel_error[1], 7),

 "Z": np.round(rel_error[2], 7)

 },

 "Norma Real": np.round(vec_norm_real, 7),

 "Norma Interp": np.round(vec_norm_interpolate, 7),

 "(Norma Real) - (Interp)": np.round((vec_norm_real - vec_norm_interpolate), 7),

 "(Norma Real - Norma Interp)/(Norma Real)": np.round(((vec_norm_real -

vec_norm_interpolate) / vec_norm_real), 7),

 "Norma(Vector Reals - Vector Interp)": np.round((np.linalg.norm((df_error['Z_Real'] -

df_error['Z_Interp']))), 7)

75

 }

 dic_to_print = {

 "Absolute Error": np.round(abs_error[2], 7),

 "Relative Error": np.round(rel_error[2], 7),

 "Norma(Vector Reals - Vector Interp)": np.round(

 (np.linalg.norm((df_error['Z_Real'] - df_error['Z_Interp']))), 7)

 }

 # rprint(dic)

 dic_errors['Kriging Method'][CONCRETE_MODEL.capitalize()] = dic_to_print

 plt_z = ddff.pivot_table(index='X', columns='Y', values='Z').T.values

 X_unique = np.sort(ddff.X.unique())

 Y_unique = np.sort(ddff.Y.unique())

 plt_x, plt_y = np.meshgrid(X_unique, Y_unique)

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')

 cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(cs, fontsize=8)

 plt.axis('scaled')

 plt.colorbar(ct)

 plt.title(f'Kriging {CONCRETE_MODEL.capitalize()} Simulate')

 plt.savefig(f'{point_folder}Plot_Kriging_{CONCRETE_MODEL.capitalize()}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ct = plt.contourf(plt_x, plt_y, plt_z, cmap='plasma')

 cs = plt.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(cs, fontsize=8)

 plt.scatter(df_drop['X'], df_drop['Y'], s=12, c='red')

 plt.axis('scaled')

 plt.colorbar(ct)

 plt.title(f'Kriging {CONCRETE_MODEL.capitalize()}: Simulate vs Validate')

plt.savefig(f'{point_folder}Plot_Kriging_{CONCRETE_MODEL.capitalize()}_simulate_vs_validate.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 # Fig SubPlot Errors

 fig, (ax1, ax2) = plt.subplots(1, 2)

 ct = ax1.contour(plt_x, plt_y, plt_z, colors='k')

 sct = ax1.scatter(df_error['X_Real'], df_error['Y_Real'], s=12,

c=df_error['Z_Error_Absolute'], cmap='plasma')

 ax1.clabel(ct, fontsize=8)

 ax1.title.set_text('Absolute Error')

 ax1.axis('scaled')

 divider1 = make_axes_locatable(ax1)

 cax1 = divider1.append_axes("right", size="5%", pad=0.1)

 col_bar = plt.colorbar(sct, ax=ax1, cax=cax1) # shrink=0.8)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' meters ')

 ct = ax2.contour(plt_x, plt_y, plt_z, colors='k')

 sct = ax2.scatter(df_error['X_Real'], df_error['Y_Real'], s=12,

c=df_error['Z_Error_Relative'], cmap='plasma')

 ax2.clabel(ct, fontsize=8)

 ax2.title.set_text('Relative Error')

 ax2.axis('scaled')

 divider2 = make_axes_locatable(ax2)

 cax2 = divider2.append_axes("right", size="5%", pad=0.1)

 col_bar = plt.colorbar(sct, ax=ax2, cax=cax2) # shrink=0.8)

 col_bar.ax.get_yaxis().labelpad = 15

 col_bar.ax.set_ylabel(' % ', rotation=270)

 fig.suptitle(f'Errors Distribution of Kriging {CONCRETE_MODEL.capitalize()}',

fontsize=16)

plt.savefig(f'{point_folder}Plot_Errors_Distribution_Kriging_{CONCRETE_MODEL.capitalize()}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 fig = plt.figure()

 ax = fig.add_subplot(111, projection='3d')

 X, Y, Z = axes3d.get_test_data(0.05)

 ct3d = ax.contour(plt_x, plt_y, plt_z, levels=[0])

 ax.clabel(ct3d, fontsize=9, inline=1)

 ax.scatter(df_error['X_Real'], df_error['Y_Real'], df_error['Z_Interp'],

 label='Interpolate Values')

 ax.scatter(df_error['X_Real'], df_error['Y_Real'], df_error['Z_Real'],

 label='Real Values')

 plt.legend(loc="best")

 plt.title(f'3D Compare Real - Interpolate Kriging {CONCRETE_MODEL.capitalize()}')

76

plt.savefig(f'{point_folder}Plot_Errors_3D_Compare_Kriging_{CONCRETE_MODEL.capitalize()}.png')

 if SHOW_PLOTS:

 plt.show()

 plt.close()

 rprint(dic_errors)

77

9.2.4 STL_Delaunay.py
import pandas as pd

import matplotlib.pyplot as plt

from rich import print as rprint

import numpy as np

import pyvista as pv

from tqdm.auto import tqdm

import os

import time

class Structure3D:

 point_folder = './Points/'

 if not os.path.exists(point_folder):

 os.mkdir(point_folder)

 else:

 pass

 def __init__(self, data_frame):

 self.df = data_frame

 def save_method(self, name, method):

 self.df.to_csv(f'{self.point_folder}{method}_DataFrame_{name}.csv', index=False)

 def load_last_method(self, name, method):

 self.df = pd.read_csv(f'{self.point_folder}{method}_DataFrame_{name}.csv')

 self.df.columns = ['X', 'Y', 'Z']

 return self.df

 def blocs_to_print(self):

 t = time.strftime("%Y%m%d-%H%M%S")

 self.df['X'] = self.df['X'] - min(self.df['X'])

 self.df['Y'] = self.df['Y'] - min(self.df['Y'])

 self.df['Z'] = (self.df['Z'] + abs(min(self.df['Z']))) / 10

 rprint('Values of X: ', min(self.df['X']), ' - ', max(self.df['X']))

 rprint('Values of Y: ', min(self.df['Y']), ' - ', max(self.df['Y']))

 rprint('Values of Z: ', min(self.df['Z']), ' - ', max(self.df['Z']))

 limit_in_x = max(self.df['X']) * 1/2

 limit_in_y = max(self.df['Y']) * 1/4

 rprint('Limit inter Bloc in X:', limit_in_x)

 rprint('Limit inter Bloc in Y:', limit_in_y)

 list_B_11 = []

 list_B_12 = []

 list_B_13 = []

 list_B_14 = []

 list_B_21 = []

 list_B_22 = []

 list_B_23 = []

 list_B_24 = []

 for data in self.df.values:

 x = data[0]

 y = data[1]

 z = data[2]

 if x < limit_in_x:

 if y < limit_in_y:

 list_B_11.append([x, y, z])

 elif limit_in_y <= y < 2*limit_in_y:

 list_B_12.append([x, y, z])

 elif 2*limit_in_y <= y < 3*limit_in_y:

 list_B_13.append([x, y, z])

 elif y >= 3*limit_in_y:

 list_B_14.append([x, y, z])

 elif x >= limit_in_x:

 if y < limit_in_y:

 list_B_21.append([x, y, z])

 elif limit_in_y <= y < 2 * limit_in_y:

 list_B_22.append([x, y, z])

 elif 2 * limit_in_y <= y < 3 * limit_in_y:

 list_B_23.append([x, y, z])

 elif y >= 3 * limit_in_y:

 list_B_24.append([x, y, z])

78

 rprint(list_B_11)

 df_B_11 = pd.DataFrame(list_B_11)

 rprint(df_B_11)

 df_B_11.columns = ['X', 'Y', 'Z']

 df_B_11.to_csv(f'{self.point_folder}df_B_11_{t}.csv', index=False)

 rprint('Bloc 1 1 X: ', min(df_B_11['X']), max(df_B_11['X']))

 rprint('Bloc 1 1 Y: ', min(df_B_11['Y']), max(df_B_11['Y']))

 rprint()

 df_B_12 = pd.DataFrame(list_B_12)

 df_B_12.columns = ['X', 'Y', 'Z']

 df_B_12.to_csv(f'{self.point_folder}df_B_12_{t}.csv', index=False)

 rprint('Bloc 1 2 X: ', min(df_B_12['X']), max(df_B_12['X']))

 rprint('Bloc 1 2 Y: ', min(df_B_12['Y']), max(df_B_12['Y']))

 rprint()

 df_B_13 = pd.DataFrame(list_B_13)

 df_B_13.columns = ['X', 'Y', 'Z']

 df_B_13.to_csv(f'{self.point_folder}df_B_13_{t}.csv', index=False)

 rprint('Bloc 1 3 X: ', min(df_B_13['X']), max(df_B_13['X']))

 rprint('Bloc 1 3 Y: ', min(df_B_13['Y']), max(df_B_13['Y']))

 rprint()

 df_B_14 = pd.DataFrame(list_B_14)

 df_B_14.columns = ['X', 'Y', 'Z']

 df_B_14.to_csv(f'{self.point_folder}df_B_14_{t}.csv', index=False)

 rprint('Bloc 1 4 X: ', min(df_B_14['X']), max(df_B_14['X']))

 rprint('Bloc 1 4 Y: ', min(df_B_14['Y']), max(df_B_14['Y']))

 rprint()

 df_B_21 = pd.DataFrame(list_B_21)

 df_B_21.columns = ['X', 'Y', 'Z']

 df_B_21.to_csv(f'{self.point_folder}df_B_21_{t}.csv', index=False)

 rprint('Bloc 2 1 X: ', min(df_B_21['X']), max(df_B_21['X']))

 rprint('Bloc 2 1 Y: ', min(df_B_21['Y']), max(df_B_21['Y']))

 rprint()

 df_B_22 = pd.DataFrame(list_B_22)

 df_B_22.columns = ['X', 'Y', 'Z']

 df_B_22.to_csv(f'{self.point_folder}df_B_22_{t}.csv', index=False)

 rprint('Bloc 2 2 X: ', min(df_B_22['X']), max(df_B_22['X']))

 rprint('Bloc 2 2 Y: ', min(df_B_22['Y']), max(df_B_22['Y']))

 rprint()

 df_B_23 = pd.DataFrame(list_B_23)

 df_B_23.columns = ['X', 'Y', 'Z']

 df_B_23.to_csv(f'{self.point_folder}df_B_23_{t}.csv', index=False)

 rprint('Bloc 2 3 X: ', min(df_B_23['X']), max(df_B_23['X']))

 rprint('Bloc 2 3 Y: ', min(df_B_23['Y']), max(df_B_23['Y']))

 rprint()

 df_B_24 = pd.DataFrame(list_B_24)

 df_B_24.columns = ['X', 'Y', 'Z']

 df_B_24.to_csv(f'{self.point_folder}df_B_24_{t}.csv', index=False)

 rprint('Bloc 2 4 X: ', min(df_B_24['X']), max(df_B_24['X']))

 rprint('Bloc 2 4 Y: ', min(df_B_24['Y']), max(df_B_24['Y']))

 rprint()

 return [df_B_11, df_B_12, df_B_13, df_B_14, df_B_21, df_B_22, df_B_23, df_B_24], t

 def blocs_to_print_2(self):

 t = time.strftime("%Y%m%d-%H%M%S")

 self.df['X'] = self.df['X'] - min(self.df['X'])

 self.df['Y'] = self.df['Y'] - min(self.df['Y'])

 self.df['Z'] = (self.df['Z'] + abs(min(self.df['Z']))) / 10

 rprint('Values of X: ', min(self.df['X']), ' - ', max(self.df['X']))

 rprint('Values of Y: ', min(self.df['Y']), ' - ', max(self.df['Y']))

 rprint('Values of Z: ', min(self.df['Z']), ' - ', max(self.df['Z']))

 limit_in_x = max(self.df['X']) * 1 / 2

 limit_in_y = max(self.df['Y']) * 1 / 3

 rprint('Limit inter Bloc in X:', limit_in_x)

 rprint('Limit inter Bloc in Y:', limit_in_y)

 list_B_11 = []

 list_B_12 = []

 list_B_13 = []

 # list_B_14 = []

 list_B_21 = []

 list_B_22 = []

 list_B_23 = []

 # list_B_24 = []

79

 for data in self.df.values:

 x = data[0]

 y = data[1]

 z = data[2]

 if x < limit_in_x:

 if y < limit_in_y:

 list_B_11.append([x, y, z])

 elif limit_in_y <= y < 2 * limit_in_y:

 list_B_12.append([x, y, z])

 elif 2 * limit_in_y <= y < 3 * limit_in_y:

 list_B_13.append([x, y, z])

 # elif y >= 3 * limit_in_y:

 # list_B_14.append([x, y, z])

 elif x >= limit_in_x:

 if y < limit_in_y:

 list_B_21.append([x, y, z])

 elif limit_in_y <= y < 2 * limit_in_y:

 list_B_22.append([x, y, z])

 elif 2 * limit_in_y <= y < 3 * limit_in_y:

 list_B_23.append([x, y, z])

 # elif y >= 3 * limit_in_y:

 # list_B_24.append([x, y, z])

 rprint(list_B_11)

 df_B_11 = pd.DataFrame(list_B_11)

 rprint(df_B_11)

 df_B_11.columns = ['X', 'Y', 'Z']

 df_B_11.to_csv(f'{self.point_folder}df_B_11_{t}.csv', index=False)

 rprint('Bloc 1 1 X: ', min(df_B_11['X']), max(df_B_11['X']))

 rprint('Bloc 1 1 Y: ', min(df_B_11['Y']), max(df_B_11['Y']))

 rprint()

 df_B_12 = pd.DataFrame(list_B_12)

 df_B_12.columns = ['X', 'Y', 'Z']

 df_B_12.to_csv(f'{self.point_folder}df_B_12_{t}.csv', index=False)

 rprint('Bloc 1 2 X: ', min(df_B_12['X']), max(df_B_12['X']))

 rprint('Bloc 1 2 Y: ', min(df_B_12['Y']), max(df_B_12['Y']))

 rprint()

 df_B_13 = pd.DataFrame(list_B_13)

 df_B_13.columns = ['X', 'Y', 'Z']

 df_B_13.to_csv(f'{self.point_folder}df_B_13_{t}.csv', index=False)

 rprint('Bloc 1 3 X: ', min(df_B_13['X']), max(df_B_13['X']))

 rprint('Bloc 1 3 Y: ', min(df_B_13['Y']), max(df_B_13['Y']))

 rprint()

 # df_B_14 = pd.DataFrame(list_B_14)

 # df_B_14.columns = ['X', 'Y', 'Z']

 # df_B_14.to_csv(f'{self.point_folder}df_B_14_{t}.csv', index=False)

 # rprint('Bloc 1 4 X: ', min(df_B_14['X']), max(df_B_14['X']))

 # rprint('Bloc 1 4 Y: ', min(df_B_14['Y']), max(df_B_14['Y']))

 # rprint()

 df_B_21 = pd.DataFrame(list_B_21)

 df_B_21.columns = ['X', 'Y', 'Z']

 df_B_21.to_csv(f'{self.point_folder}df_B_21_{t}.csv', index=False)

 rprint('Bloc 2 1 X: ', min(df_B_21['X']), max(df_B_21['X']))

 rprint('Bloc 2 1 Y: ', min(df_B_21['Y']), max(df_B_21['Y']))

 rprint()

 df_B_22 = pd.DataFrame(list_B_22)

 df_B_22.columns = ['X', 'Y', 'Z']

 df_B_22.to_csv(f'{self.point_folder}df_B_22_{t}.csv', index=False)

 rprint('Bloc 2 2 X: ', min(df_B_22['X']), max(df_B_22['X']))

 rprint('Bloc 2 2 Y: ', min(df_B_22['Y']), max(df_B_22['Y']))

 rprint()

 df_B_23 = pd.DataFrame(list_B_23)

 df_B_23.columns = ['X', 'Y', 'Z']

 df_B_23.to_csv(f'{self.point_folder}df_B_23_{t}.csv', index=False)

 rprint('Bloc 2 3 X: ', min(df_B_23['X']), max(df_B_23['X']))

 rprint('Bloc 2 3 Y: ', min(df_B_23['Y']), max(df_B_23['Y']))

 rprint()

 return [df_B_11, df_B_12, df_B_13, df_B_21, df_B_22, df_B_23], t

 def make_stl(self, df_block, mesh_name_to_save, alfa_Delaunay_3D=1):

 rprint('Starting to generate a Delaunay STL ...')

 points = df_block.to_numpy()

80

 cloud = pv.PolyData(points)

 cloud.plot()

 volume = cloud.delaunay_2d()

 shell = volume.extract_geometry()

 shell.save(mesh_name_to_save + '.stl')

 rprint("The Delaunay STL it's done")

 shell.plot()

point_folder = './Points/'

if not os.path.exists(point_folder):

 os.mkdir(point_folder)

else:

 pass

NAME = 'NAME_OF_DATASET'

MODEL = 'METHOD'

NUM_POINTS = 'NUM_POINTS' + '_points'

STL_TOTAL = True

STL_BLOCS = False

df = pd.read_csv(f'{point_folder}{MODEL}_{NAME}_{NUM_POINTS}.csv', header=None)

df.columns = ['X', 'Y', 'Z']

rprint("File it's open to create a Delaunay STL")

df['Z'] = df['Z'] / 3000

structure_3d_fit = Structure3D(df)

'''STL en Blocs'''

if STL_BLOCS:

 blocks, time = structure_3d_fit.blocs_to_print_2()

 x = 1

 for block in tqdm(blocks):

 # print(x)

 # rprint(block, type(block))

 name = f'{x}'

 structure_3d_fit.make_stl(block, name, alfa_Delaunay_3D=1)

 x += 1

'''STL de tot el Bloc'''

if STL_TOTAL:

 structure_3d_fit.make_stl(df, f'{point_folder}{MODEL}_{NAME}_{NUM_POINTS}')

 # structure_3d_fit.from_df_to_txt(df, MODEL, NAME, NUM_POINTS)

